Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

mTOR complexes in neurodevelopmental and neuropsychiatric disorders

Subjects

Abstract

The mechanistic target of rapamycin (mTOR) acts as a highly conserved signaling “hub” that integrates neuronal activity and a variety of synaptic inputs. mTOR is found in two functionally distinct complexes, mTORC1 and mTORC2, that crucially control long-term synaptic efficacy and memory storage. Dysregulation of mTOR signaling is associated with neurodevelopmental and neuropsychiatric disorders. In this Review, we describe the most recent advances in studies of mTOR signaling in the brain and the possible mechanisms underlying the many different functions of the mTOR complexes in neurological diseases. In addition, we discuss the medical relevance of these findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: mTOR forms two functionally distinct complexes: mTORC1 and mTORC2.
Figure 2: Regulation of the mTOR signaling pathway in the brain.

Similar content being viewed by others

References

  1. Laplante, M. & Sabatini, D.M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heitman, J., Movva, N.R. & Hall, M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905–909 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Brown, E.J. et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756–758 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Sabatini, D.M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S.H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Sabers, C.J. et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J. Biol. Chem. 270, 815–822 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Jacinto, E. et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Bio. 6, 1122–1128 (2004).

    Article  CAS  Google Scholar 

  7. Sarbassov, D.D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–1302 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Sarbassov, D.D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Zhou, J. et al. Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. J. Neurosci. 29, 1773–1783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meikle, L. et al. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J. Neurosci. 28, 5422–5432 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peterson, T.R. et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873–886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaizuka, T. et al. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J. Biol. Chem. 285, 20109–20116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Costa-Mattioli, M., Sossin, W.S., Klann, E. & Sonenberg, N. Translational Control of Long-Lasting Synaptic Plasticity and Memory. Neuron 61, 10–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song, M.S., Salmena, L. & Pandolfi, P.P. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol. 13, 283–296 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Cybulski, N. & Hall, M.N. TOR complex 2: a signaling pathway of its own. Trends Biochem. Sci. 34, 620–627 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Huang, W. et al. mTORC2 controls actin polymerization required for consolidation of long-term memory. Nat. Neurosci. 16, 441–448 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zinzalla, V., Stracka, D., Oppliger, W. & Hall, M.N. Activation of mTORC2 by association with the ribosome. Cell 144, 757–768 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Ma, X.M., Yoon, S.O., Richardson, C.J., Julich, K. & Blenis, J. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell 133, 303–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Sonenberg, N. & Hinnebusch, A.G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bidinosti, M. et al. Postnatal deamidation of 4E–BP2 in brain enhances its association with raptor and alters kinetics of excitatory synaptic transmission. Mol. Cell 37, 797–808 (2009).

    Article  CAS  Google Scholar 

  21. Gkogkas, C.G. et al. Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 493, 371–377 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Ran, I. et al. Selective regulation of GluA subunit synthesis and AMPA receptor-mediated synaptic function and plasticity by the translation repressor 4E–BP2 in hippocampal pyramidal cells. J. Neurosci. 33, 1872–1886 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thoreen, C.C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hsieh, A.C. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55–61 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma, X.M. & Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307–318 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Oh, W.J. & Jacinto, E. mTOR complex 2 signaling and functions. Cell Cycle 10, 2305–2316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pearce, L.R., Sommer, E.M., Sakamoto, K., Wullschleger, S. & Alessi, D.R. Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem. J. 436, 169–179 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Hernández-Negrete, I. et al. P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration. J. Biol. Chem. 282, 23708–23715 (2007).

    Article  PubMed  CAS  Google Scholar 

  29. Yang, H. et al. mTOR kinase structure, mechanism and regulation. Nature 497, 217–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Punt, C.J., Boni, J., Bruntsch, U., Peters, M. & Thielert, C. Phase I and pharmacokinetic study of CCI-779, a novel cytostatic cell-cycle inhibitor, in combination with 5-fluorouracil and leucovorin in patients with advanced solid tumors. Ann. Oncol. 14, 931–937 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Kirchner, G.I., Meier-Wiedenbach, I. & Manns, M.P. Clinical pharmacokinetics of everolimus. Clin. Pharmacokinet. 43, 83–95 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Mita, M., Sankhala, K., Abdel-Karim, I., Mita, A. & Giles, F. Deforolimus (AP23573) a novel mTOR inhibitor in clinical development. Expert Opin. Investig. Drugs 17, 1947–1954 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Thoreen, C.C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 8023–8032 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feldman, M.E. et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7, e38 (2009).

    Article  PubMed  CAS  Google Scholar 

  35. Kandel, E.R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Cingolani, L.A. & Goda, Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci. 9, 344–356 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Tang, S.J. et al. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc. Natl. Acad. Sci. USA 99, 467–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Stoica, L. et al. Selective pharmacogenetic inhibition of mammalian target of rapamycin complex I (mTORC1) blocks long-term synaptic plasticity and memory storage. Proc. Natl. Acad. Sci. USA 108, 3791–3796 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Banko, J.L. et al. Behavioral alterations in mice lacking the translation repressor 4E–BP2. Neurobiol. Learn. Mem. 87, 248–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Banko, J.L. et al. The translation repressor 4E–BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. J. Neurosci. 25, 9581–9590 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Antion, M.D. et al. Removal of S6K1 and S6K2 leads to divergent alterations in learning, memory, and synaptic plasticity. Learn. Mem. 15, 29–38 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Antion, M.D., Hou, L., Wong, H., Hoeffer, C.A. & Klann, E. mGluR-dependent long-term depression is associated with increased phosphorylation of S6 and synthesis of elongation factor 1A but remains expressed in S6K-deficient mice. Mol. Cell Biol. 28, 2996–3007 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carson, R.P., Fu, C., Winzenburger, P. & Ess, K.C. Deletion of Rictor in neural progenitor cells reveals contributions of mTORC2 signaling to tuberous sclerosis complex. Hum. Mol. Genet. doi:10.1093/hmg/dds414 (2012).

  44. Siuta, M.A. et al. Dysregulation of the norepinephrine transporter sustains cortical hypodopaminergia and schizophrenia-like behaviors in neuronal rictor null mice. PLoS Biol. 8, e1000393 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Thomanetz, V. et al. Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology. J. Cell Biol. 201, 293–308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mazei-Robison, M.S. et al. Role for mTOR signaling and neuronal activity in morphine-induced adaptations in ventral tegmental area dopamine neurons. Neuron 72, 977–990 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hou, L. & Klann, E. Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J. Neurosci. 24, 6352–6361 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Auerbach, B.D., Osterweil, E.K. & Bear, M.F. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480, 63–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bateup, H.S., Takasaki, K.T., Saulnier, J.L., Denefrio, C.L. & Sabatini, B.L. Loss of Tsc1 in vivo impairs hippocampal mGluR-LTD and increases excitatory synaptic function. J. Neurosci. 31, 8862–8869 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fombonne, E. The epidemiology of autism: a review. Psychol. Med. 29, 769–786 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Mefford, H.C., Batshaw, M.L. & Hoffman, E.P. Genomics, intellectual disability, and autism. N. Engl. J. Med. 366, 733–743 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zoghbi, H.Y. & Bear, M. F. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb. Perspect. Biol. 4, a009886 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ehninger, D., Li, W., Fox, K., Stryker, M.P. & Silva, A.J. Reversing neurodevelopmental disorders in adults. Neuron 60, 950–960 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou, J. & Parada, L.F. PTEN signaling in autism spectrum disorders. Curr. Opin. Neurobiol. doi:10.1016/j.conb.2012.05.004 (2012).

  55. Ehninger, D. et al. Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat. Med. 14, 843–848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goorden, S.M., van Woerden, G.M., van der Weerd, L., Cheadle, J.P. & Elgersma, Y. Cognitive deficits in Tsc1+/− mice in the absence of cerebral lesions and seizures. Ann. Neurol. 62, 648–655 (2007).

    Article  PubMed  Google Scholar 

  57. Uhlmann, E.J. et al. Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann. Neurol. 52, 285–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, Y. et al. Neocortical hyperexcitability in a human case of tuberous sclerosis complex and mice lacking neuronal expression of TSC1. Ann. Neurol. 61, 139–152 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Carson, R.P., Van Nielen, D.L., Winzenburger, P.A. & Ess, K.C. Neuronal and glia abnormalities in Tsc1-deficient forebrain and partial rescue by rapamycin. Neurobiol. Dis. 45, 369–380 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Zeng, L.H., Xu, L., Gutmann, D.H. & Wong, M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann. Neurol. 63, 444–453 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Way, S.W. et al. The differential effects of prenatal and/or postnatal rapamycin on neurodevelopmental defects and cognition in a neuroglial mouse model of tuberous sclerosis complex. Hum. Mol. Genet. 21, 3226–3236 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bauman, M.L. & Kemper, T.L. Neuroanatomic observations of the brain in autism: a review and future directions. Int. J. Dev. Neurosci. 23, 183–187 (2005).

    Article  PubMed  Google Scholar 

  63. Tsai, P.T. et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488, 647–651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bateup, H.S. et al. Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron 78, 510–522 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cui, Y. et al. Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 135, 549–560 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Henderson, C. et al. Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABAB receptors with arbaclofen. Sci. Transl. Med. 4, 152ra128 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Fernandez, F. et al. Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat. Neurosci. 10, 411–413 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Kwon, C.H., Zhu, X., Zhang, J. & Baker, S.J. mTor is required for hypertrophy of Pten-deficient neuronal soma in vivo. Proc. Natl. Acad. Sci. USA 100, 12923–12928 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sunnen, C.N. et al. Inhibition of the mammalian target of rapamycin blocks epilepsy progression in NS-Pten conditional knockout mice. Epilepsia 52, 2065–2075 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kwon, C.H. et al. Pten regulates neuronal arborization and social interaction in mice. Neuron 50, 377–388 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, Y., Cheng, A. & Mattson, M.P. The PTEN phosphatase is essential for long-term depression of hippocampal synapses. Neuromolecular Med. 8, 329–336 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Takeuchi, K. et al. Dysregulation of synaptic plasticity precedes appearance of morphological defects in a Pten conditional knockout mouse model of autism. Proc. Natl. Acad. Sci. USA 110, 4738–4743 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wong, M. Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: from tuberous sclerosis to common acquired epilepsies. Epilepsia 51, 27–36 (2011).

    Article  CAS  Google Scholar 

  74. Santini, E. et al. Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 493, 411–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Darnell, J.C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Busquets-Garcia, A. et al. Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat. Med. 19, 603–607 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Ljungberg, M.C. et al. Activation of mammalian target of rapamycin in cytomegalic neurons of human cortical dysplasia. Ann. Neurol. 60, 420–429 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Liliental, J. et al. Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Curr. Biol. 10, 401–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Goncharova, E., Goncharov, D., Noonan, D. & Krymskaya, V.P. TSC2 modulates actin cytoskeleton and focal adhesion through TSC1-binding domain and the Rac1 GTPase. J. Cell Biol. 167, 1171–1182 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Franz, D.N. et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann. Neurol. 59, 490–498 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Bissler, J.J. et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N. Engl. J. Med. 358, 140–151 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Krueger, D.A. et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N. Engl. J. Med. 363, 1801–1811 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Franz, D.N. et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 381, 125–132 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Krueger, D.A. et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. doi:10.1002/ana.23960 Ann. Neurol. (2013).

  85. Parker, W.E. et al. Rapamycin prevents seizures after depletion of STRADA in a rare neurodevelopmental disorder. Sci. Transl. Med. 5, 182ra153 (2013).

    Article  CAS  Google Scholar 

  86. Li, N. et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329, 959–964 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Autry, A.E. et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475, 91–95 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nosyreva, E. et al. Acute suppression of spontaneous neurotransmission drives synaptic potentiation. J. Neurosci. 33, 6990–7002 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kim, J.Y. et al. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 63, 761–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim, J.Y. et al. Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell 148, 1051–1064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhou, M. et al. mTOR Inhibition ameliorates cognitive and affective deficits caused by Disc1 knockdown in adult-born dentate granule neurons. Neuron 77, 647–654 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Emamian, E.S., Hall, D., Birnbaum, M.J., Karayiorgou, M. & Gogos, J.A. Convergent evidence for impaired AKT1–GSK3β signaling in schizophrenia. Nat. Genet. 36, 131–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Barak, S. et al. Disruption of alcohol-related memories by mTORC1 inhibition prevents relapse. Nat. Neurosci. 16, 1111–1117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nibuya, M., Nestler, E.J. & Duman, R.S. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J. Neurosci. 16, 2365–2372 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tafet, G.E. & Bernardini, R. Psychoneuroendocrinological links between chronic stress and depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 893–903 (2003).

    Article  PubMed  Google Scholar 

  96. Shirayama, Y., Chen, A.C., Nakagawa, S., Russell, D.S. & Duman, R.S. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 22, 3251–3261 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Monteggia, L.M. et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc. Natl. Acad. Sci. USA 101, 10827–10832 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Adachi, M., Barrot, M., Autry, A.E., Theobald, D. & Monteggia, L.M. Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol. Psychiatry 63, 642–649 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Autry, A.E. & Monteggia, L.M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev. 64, 238–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Koike, H., Iijima, M. & Chaki, S. Involvement of the mammalian target of rapamycin signaling in the antidepressant-like effect of group II metabotropic glutamate receptor antagonists. Neuropharmacology 61, 1419–1423 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of M.C.-M.'s laboratory, K. Krnjevic and E.T. Kavalali for comments and discussion. The figures were designed by S. Buffington. This work was supported by US National Institutes of Health grants NS076708 (M.C.-M.), MH096816 (M.C.-M.) and MH070727 (L.M.M.), Department of Defense grant AR10254 (M.C.-M.), Searle award grant 09-SSP-211 (M.C.-M.), the Whitehall Foundation (M.C.-M.) and the International Mental Health Research Organization (L.M.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mauro Costa-Mattioli or Lisa M Monteggia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa-Mattioli, M., Monteggia, L. mTOR complexes in neurodevelopmental and neuropsychiatric disorders. Nat Neurosci 16, 1537–1543 (2013). https://doi.org/10.1038/nn.3546

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3546

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing