Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Goal-dependent dissociation of visual and prefrontal cortices during working memory

Abstract

To determine the specific contribution of brain regions to working memory, human participants performed two distinct tasks on the same visually presented objects. During the maintenance of visual properties, object identity could be decoded from extrastriate, but not prefrontal, cortex, whereas the opposite held for nonvisual properties. Thus, the ability to maintain information during working memory is a general and flexible cortical property, with the role of individual regions being goal-dependent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design.
Figure 2: Nature of maintained information.
Figure 3: Decoding of object identity.

Similar content being viewed by others

References

  1. D'Esposito, M. Phil. Trans. R. Soc. Lond. B 362, 761–772 (2007).

    Article  Google Scholar 

  2. Riggall, A.C. & Postle, B.R. J. Neurosci. 32, 12990–12998 (2012).

    Article  CAS  Google Scholar 

  3. Christophel, T.B., Hebart, M.N. & Haynes, J.-D. J. Neurosci. 32, 12983–12989 (2012).

    Article  CAS  Google Scholar 

  4. Harrison, S.A. & Tong, F. Nature 458, 632–635 (2009).

    Article  CAS  Google Scholar 

  5. Serences, J.T., Ester, E.F., Vogel, E.K. & Awh, E. Psychol. Sci. 20, 207–214 (2009).

    Article  Google Scholar 

  6. Linden, D.E.J., Oosterhof, N.N., Klein, C. & Downing, P.E. J. Neurophysiol. 107, 628–639 (2012).

    Article  Google Scholar 

  7. Romero, L., Walsh, V. & Papagno, C. J. Cogn. Neurosci. 18, 1147–1155 (2006).

    Article  CAS  Google Scholar 

  8. Lewis-Peacock, J.A. & Postle, B.R. Neuropsychologia 50, 470–478 (2012).

    Article  Google Scholar 

  9. Curtis, C.E. & D'Esposito, M. Trends Cogn. Sci. 7, 415–423 (2003).

    Article  Google Scholar 

  10. Buckner, R.L. & Wheeler, M.E. Nat. Rev. Neurosci. 2, 624–634 (2001).

    Article  CAS  Google Scholar 

  11. Kravitz, D.J., Saleem, K.S., Baker, C.I., Ungerleider, L.G. & Mishkin, M. Trends Cogn. Sci. 17, 26–49 (2013).

    Article  Google Scholar 

  12. Kravitz, D.J., Kriegeskorte, N. & Baker, C.I. Cereb. Cortex 20, 2916–2925 (2010).

    Article  Google Scholar 

  13. Funahashi, S., Bruce, C.J. & Goldman-Rakic, P.S. J. Neurophysiol. 61, 331–349 (1989).

    Article  CAS  Google Scholar 

  14. Lee, T.G. & D'Esposito, M. J. Neurosci. 32, 15458–15466 (2012).

    Article  CAS  Google Scholar 

  15. Sligte, I.G., Van Moorselaar, D. & Vandenbroucke, A.R.E. J. Neurosci. 33, 1293–1294 (2013).

    Article  CAS  Google Scholar 

  16. Kravitz, D.J., Saleem, K.S., Baker, C.I. & Mishkin, M. Nat. Rev. Neurosci. 12, 217–230 (2011).

    Article  CAS  Google Scholar 

  17. Lee, S.H., Kravitz, D.J. & Baker, C.I. Neuroimage 59, 4064–4073 (2012).

    Article  Google Scholar 

  18. Simmons, W.K. et al. Neuropsychologia 45, 2802–2810 (2007).

    Article  Google Scholar 

  19. Brady, M.J. & Kersten, D. J. Vis. 3, 413–422 (2003).

    Article  Google Scholar 

  20. Van de Moortele, P.-F. et al. Neuroimage 46, 432–446 (2009).

    Article  Google Scholar 

  21. Cox, R.W. Comput. Biomed. Res. 29, 162–173 (1996).

    Article  CAS  Google Scholar 

  22. Kriegeskorte, N., Goebel, R. & Bandettini, P. Proc. Natl. Acad. Sci. USA 103, 3863–3868 (2006).

    Article  CAS  Google Scholar 

  23. Haxby, J.V. et al. Science 293, 2425–2430 (2001).

    Article  CAS  Google Scholar 

  24. Desikan, R.S. et al. Neuroimage 31, 968–980 (2006).

    Article  Google Scholar 

  25. Saad, Z.S. & Reynolds, R.C. Neuroimage 62, 768–773 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institute of Mental Health Intramural Research Program. Thanks to S. Marrett and S. Inati for help with data acquisition, E. Bilger and E. Aguila for data collection, A. Harel and A. Martin for comments and members of the Laboratory of Brain and Cognition for discussion.

Author information

Authors and Affiliations

Authors

Contributions

S.-H.L., D.J.K. and C.I.B. designed the research. S.-H.L. performed the research and analyzed the data. D.J.K. contributed analytic tools. C.I.B. supervised the project. S.-H.L., D.J.K. and C.I.B. wrote the manuscript.

Corresponding author

Correspondence to Sue-Hyun Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 3027 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SH., Kravitz, D. & Baker, C. Goal-dependent dissociation of visual and prefrontal cortices during working memory. Nat Neurosci 16, 997–999 (2013). https://doi.org/10.1038/nn.3452

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3452

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing