Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Determination of absolute protein numbers in single synapses by a GFP-based calibration technique

Abstract

To build a quantitative model of molecular organization of neurons, it is essential to have information about the number of protein molecules at individual synapses. Here we developed a method to estimate absolute numbers of individual proteins at actual excitatory synapses by calibrating the fluorescence intensity of microspheres with single EGFP molecules. In cultured hippocampal neurons, we observed a monotonous increase of postsynaptic protein numbers per single synapse during neuronal differentiation and subsequent stabilization. At maturity we calculated that a single excitatory postsynaptic site contains 100–450 of individual postsynaptic proteins, such as PSD-95, GKAP, Shank and Homer. This narrow range of postsynaptic protein content suggests relatively simple stoichiometry of postsynaptic molecular organization. The EGFP-based calibration technique provides an unprecedented general method for estimating the amounts of proteins in macromolecular complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging of single molecules using TIRFM.
Figure 2: Quantification of fluorescence from single molecules and single microspheres.
Figure 3: Estimation of nonfluorescent EGFP-fusion molecules.
Figure 4: Estimation of scaffolding protein numbers by EGFP-based calibration.
Figure 5: Developmental changes of scaffolding protein numbers in single postsynaptic sites.

Similar content being viewed by others

References

  1. Palay, S.L. The morphology of synapses in the central nervous system. Exp. Cell Res. 5, 275–293 (1958).

    Google Scholar 

  2. Kennedy, M.B. Signal-processing machines at the postsynaptic density. Science 290, 750–754 (2000).

    Article  CAS  Google Scholar 

  3. Sheng, M. & Kim, M.J. Postsynaptic signaling and plasticity mechanisms. Science 298, 776–780 (2002).

    Article  CAS  Google Scholar 

  4. Kim, E. et al. GKAP, a novel synaptic protein that interacts with the guanylate kinase–like domain of the PSD-95/SAP90 family of channel clustering molecules. J. Cell Biol. 136, 669–678 (1997).

    Article  CAS  Google Scholar 

  5. Naisbitt, S. et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23, 569–582 (1999).

    Article  CAS  Google Scholar 

  6. Tadokoro, S., Tachibana, T., Imanaka, T., Nishida, W. & Sobue, K. Involvement of unique leucine-zipper motif of PSD-Zip45 (Homer1c/vesl-1L) in group 1 metabotropic glutamate receptor clustering. Proc. Natl. Acad. Sci. USA 96, 13801–13806 (1999).

    Article  CAS  Google Scholar 

  7. Tu, J.C. et al. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21, 717–726 (1998).

    Article  CAS  Google Scholar 

  8. Petersen, J.D. et al. Distribution of postsynaptic density (PSD)-95 and Ca2+/calmodulin-dependent protein kinase II at the PSD. J. Neurosci. 23, 11270–11278 (2003).

    Article  CAS  Google Scholar 

  9. Valtschanoff, J.G. & Weinberg, R.J. Laminar organization of the NMDA receptor complex within the postsynaptic density. J. Neurosci. 21, 1211–1217 (2001).

    Article  CAS  Google Scholar 

  10. Husi, H., Ward, M.A., Choudhary, J.S., Blackstock, W.P. & Grant, S.G. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3, 661–669 (2000).

    Article  CAS  Google Scholar 

  11. Walikonis, R.S. et al. Identification of proteins in the postsynaptic density fraction by mass spectrometry. J. Neurosci. 20, 4069–4080 (2000).

    Article  CAS  Google Scholar 

  12. Jordan, B.A. et al. Identification and verification of novel rodent postsynaptic density proteins. Mol. Cell. Proteomics 3, 857–871 (2004).

    Article  CAS  Google Scholar 

  13. Tanaka, J. et al. Number and density of AMPA receptors in single synapses in immature cerebellum. J. Neurosci. 25, 799–807 (2005).

    Article  CAS  Google Scholar 

  14. Nusser, Z. A new approach to estimate the number, density and variability of receptors at central synapses. Eur. J. Neurosci. 11, 745–752 (1999).

    Article  CAS  Google Scholar 

  15. Jontes, J.D., Buchanan, J. & Smith, S.J. Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo. Nat. Neurosci. 3, 231–237 (2000).

    Article  CAS  Google Scholar 

  16. Tokunaga, M., Kitamura, K., Saito, K., Iwane, A.H. & Yanagida, T. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem. Biophys. Res. Commun. 235, 47–53 (1997).

    Article  CAS  Google Scholar 

  17. Wu, X. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41–46 (2003).

    Article  CAS  Google Scholar 

  18. Iino, R., Koyama, I. & Kusumi, A. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys. J. 80, 2667–2677 (2001).

    Article  CAS  Google Scholar 

  19. Michalet, X. et al. Properties of fluorescent semiconductor nanocrystals and their application to biological labeling. Single Molecules 2, 261–276 (2001).

    Article  CAS  Google Scholar 

  20. Kubitscheck, U., Kuckmann, O., Kues, T. & Peters, R. Imaging and tracking of single GFP molecules in solution. Biophys. J. 78, 2170–2179 (2000).

    Article  CAS  Google Scholar 

  21. Patterson, G.H., Knobel, S.M., Sharif, W.D., Kain, S.R. & Piston, D.W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790 (1997).

    Article  CAS  Google Scholar 

  22. Muller, B.M. et al. SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron 17, 255–265 (1996).

    Article  CAS  Google Scholar 

  23. Muller, B.M. et al. Molecular characterization and spatial distribution of SAP97, a novel presynaptic protein homologous to SAP90 and the Drosophila discs-large tumor suppressor protein. J. Neurosci. 15, 2354–2366 (1995).

    Article  CAS  Google Scholar 

  24. Kim, E., Cho, K.O., Rothschild, A. & Sheng, M. Heteromultimerization and NMDA receptor-clustering activity of Chapsyn-110, a member of the PSD-95 family of proteins. Neuron 17, 103–113 (1996).

    Article  CAS  Google Scholar 

  25. Brenman, J.E., Christopherson, K.S., Craven, S.E., McGee, A.W. & Bredt, D.S. Cloning and characterization of postsynaptic density 93, a nitric oxide synthase interacting protein. J. Neurosci. 16, 7407–7415 (1996).

    Article  CAS  Google Scholar 

  26. Usui, S. et al. Synaptic targeting of PSD-Zip45 (Homer 1c) and its involvement in the synaptic accumulation of F-actin. J. Biol. Chem. 278, 10619–10628 (2003).

    Article  CAS  Google Scholar 

  27. Okabe, S., Urushido, T., Konno, D., Okado, H. & Sobue, K. Rapid redistribution of the postsynaptic density protein PSD-Zip45 (Homer 1c) and its differential regulation by NMDA receptors and calcium channels. J. Neurosci. 21, 9561–9571 (2001).

    Article  CAS  Google Scholar 

  28. Okabe, S., Kim, H.D., Miwa, A., Kuriu, T. & Okado, H. Continual remodeling of postsynaptic density and its regulation by synaptic activity. Nat. Neurosci. 2, 804–811 (1999).

    Article  CAS  Google Scholar 

  29. Chiu, C.S. et al. Number, density, and surface/cytoplasmic distribution of GABA transporters at presynaptic structures of knock-in mice carrying GABA transporter subtype 1-green fluorescent protein fusions. J. Neurosci. 22, 10251–10266 (2002).

    Article  CAS  Google Scholar 

  30. Chiu, C.S., Kartalov, E., Unger, M., Quake, S. & Lester, H.A. Single-molecule measurements calibrate green fluorescent protein surface densities on transparent beads for use with 'knock-in' animals and other expression systems. J. Neurosci. Methods 105, 55–63 (2001).

    Article  CAS  Google Scholar 

  31. Schikorski, T. & Stevens, C.F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867 (1997).

    Article  CAS  Google Scholar 

  32. Racca, C., Stephenson, F.A., Streit, P., Roberts, J.D. & Somogyi, P. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J. Neurosci. 20, 2512–2522 (2000).

    Article  CAS  Google Scholar 

  33. Shepherd, G.M. & Harris, K.M. Three-dimensional structure and composition of CA3 → CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J. Neurosci. 18, 8300–8310 (1998).

    Article  CAS  Google Scholar 

  34. Teruel, M.N., Blanpied, T.A., Shen, K., Augustine, G.J. & Meyer, T. A versatile microporation technique for the transfection of culture CNS neurons. J. Neurosci. Methods 93, 37–48 (1999).

    Article  CAS  Google Scholar 

  35. Ebihara, T., Kawabata, I., Usui, S., Sobue, K. & Okabe, S. Synchronized formation and remodeling of postsynaptic densities: long-term visualization of hippocampal neurons expressing postsynaptic density proteins tagged with green fluorescent protein. J. Neurosci. 23, 2170–2181 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Inui for PSD-95 antibody, T. Furuichi for pan-Homer antibody, T. Urushido for generating recombinant adenoviruses, A.M. Craig and R. Shigemoto for valuable advice. The work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan and Japan Science and Technology Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Okabe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Relative affinity of monoclonal and polyclonal anti-GFP antibodies to EGFP or EYFP-tagged scaffolding proteins. (PDF 153 kb)

Supplementary Fig. 2

Relative immunoreactivity of PSD scaffolding proteins. (PDF 667 kb)

Supplementary Fig. 3

Spatial overlap of individual scaffolding protein clusters and their association with excitatory presynaptic structure. (PDF 508 kb)

Supplementary Fig. 4

Relative fluorescence intensity of PSD protein clusters with or without excitatory presynaptic structure. (PDF 97 kb)

Supplementary Fig. 5

Fluorescence intensity measurement of EGFP-Shank2 clusters before and after fixation. (PDF 308 kb)

Supplementary Fig. 6

Distribution of scaffolding protein content in single synapses determined by multiple antibodies. (PDF 130 kb)

Supplementary Methods (PDF 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugiyama, Y., Kawabata, I., Sobue, K. et al. Determination of absolute protein numbers in single synapses by a GFP-based calibration technique. Nat Methods 2, 677–684 (2005). https://doi.org/10.1038/nmeth783

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth783

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing