Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mapping protein post-translational modifications with mass spectrometry

Abstract

Post-translational modifications of proteins control many biological processes, and examining their diversity is critical for understanding mechanisms of cell regulation. Mass spectrometry is a fundamental tool for detecting and mapping covalent modifications and quantifying their changes. Modern approaches have made large-scale experiments possible, screening complex mixtures of proteins for alterations in chemical modifications. By profiling protein chemistries, biologists can gain deeper insight into biological control. The aim of this review is introduce biologists to current strategies in mass spectrometry–based proteomics that are used to characterize protein post-translational modifications, noting strengths and shortcomings of various approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow chart for using MS to detect and analyze protein post-translational modifications described in this review.
Figure 2: Common methods used for phosphopeptide quantification.
Figure 3: Determining stoichiometry of phosphorylation.

Similar content being viewed by others

References

  1. Guzzetta, A.W. (ed.) IonSource http://www.ionsource.com.

  2. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Wysocki, V.H., Resing, K.A., Zhang, Q. & Cheng, G. Mass spectrometry of peptides and proteins. Methods 35, 211–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Johnson, R.S., Davis, M.T., Taylor, J.A. & Patterson, S.D. Informatics for protein identification by mass spectrometry. Methods 35, 223–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Cohen, P. The origins of protein phosphorylation. Nat. Cell Biol. 4, E127–E130 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Steen, H., Pandey, A., Andersen, J.S. & Mann, M. Analysis of tyrosine phosphorylation sites in signaling molecules by a phosphotyrosine-specific immonium ion scanning method. Sci. STKE [online] 2002, PL16 (2002).

    Google Scholar 

  7. Beausoleil, S.A. et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA 101, 12130–12135 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Olsen, J.V. & Mann, M. Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. Proc. Natl. Acad. Sci. USA 101, 13417–13422 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stensballe, A., Jensen, O.N., Olsen, J.V., Haselmann, K.F. & Zubarev, R.A. Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun. Mass Spectrom. 14, 1793–1800 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J. & Hunt, D.F. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. USA 101, 9528–9533 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zubarev, R.A. et al. Electron capture dissociation for structural characterization of multiply charged protein cations. Anal. Chem. 72, 563–573 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Carr, S.A., Huddleston, M.J. & Annan, R.S. Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal. Biochem. 239, 180–192 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Byford, M.F. Rapid and selective modification of phosphoserine residues catalysed by Ba2+ ions for their detection during peptide microsequencing. Biochem. J. 280, 261–265 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meyer, H.E., Hoffmann-Posorske, E., Korte, H. & Heilmeyer, L.M. Jr. Sequence analysis of phosphoserine-containing peptides. Modification for picomolar sensitivity. FEBS Lett. 204, 61–66 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Oda, Y., Nagasu, T. & Chait, B.T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol. 19, 379–382 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Qian, W.J. et al. Phosphoprotein isotope-coded solid-phase tag approach for enrichment and quantitative analysis of phosphopeptides from complex mixtures. Anal. Chem. 75, 5441–5450 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Jalili, P.R., Sharma, D. & Ball, H.L. Enhancement of ionization efficiency and selective enrichment of phosphorylated peptides from complex protein mixtures using a reversible poly-histidine tag. J. Am. Soc. Mass Spectrom. 18, 1007–1017 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Steen, H. & Mann, M. A new derivatization strategy for the analysis of phosphopeptides by precursor ion scanning in positive ion mode. J. Am. Soc. Mass Spectrom. 13, 996–1003 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Knight, Z.A. et al. Phosphospecific proteolysis for mapping sites of protein phosphorylation. Nat. Biotechnol. 21, 1047–1054 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. McLachlin, D.T. & Chait, B.T. Improved beta-elimination-based affinity purification strategy for enrichment of phosphopeptides. Anal. Chem. 75, 6826–6836 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Karty, J.A. & Reilly, J.P. Deamidation as a consequence of beta-elimination of phosphopeptides. Anal. Chem. 77, 4673–4676 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Li, W., Backlund, P.S., Boykins, R.A., Wang, G. & Chen, H.C. Susceptibility of the hydroxyl groups in serine and threonine to beta-elimination/Michael addition under commonly used moderately high-temperature conditions. Anal. Biochem. 323, 94–102 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Tao, W.A. et al. Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry. Nat. Methods 2, 591–598 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Bodenmiller, B. et al. An integrated chemical, mass spectrometric and computational strategy for (quantitative) phosphoproteomics: application to Drosophila melanogaster Kc167 cells. Mol. Biosyst. 3, 275–286 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Bodenmiller, B., Mueller, L.N., Mueller, M., Domon, B. & Aebersold, R. Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat. Methods 4, 231–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Andersson, L. & Porath, J. Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal. Biochem. 154, 250–254 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. Posewitz, M.C. & Tempst, P. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal. Chem. 71, 2883–2892 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Kweon, H.K. & Hakansson, K. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal. Chem. 78, 1743–1749 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Larsen, M.R., Thingholm, T.E., Jensen, O.N., Roepstorff, P. & Jorgensen, T.J. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteomics 4, 873–886 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Y. et al. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol. Cell. Proteomics 4, 1240–1250 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Villen, J., Beausoleil, S.A., Gerber, S.A. & Gygi, S.P. Large-scale phosphorylation analysis of mouse liver. Proc. Natl. Acad. Sci. USA 104, 1488–1493 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rush, J. et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23, 94–101 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Blagoev, B., Ong, S.E., Kratchmarova, I. & Mann, M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol. 22, 1139–1145 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Haydon, C.E. et al. Identification of novel phosphorylation sites on Xenopus laevis Aurora A and analysis of phosphopeptide enrichment by immobilized metal-affinity chromatography. Mol. Cell. Proteomics 2, 1055–1067 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Nuhse, T.S., Stensballe, A., Jensen, O.N. & Peck, S.C. Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol. Cell. Proteomics 2, 1234–1243 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. Olsen, J.V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Beausoleil, S.A., Villen, J., Gerber, S.A., Rush, J. & Gygi, S.P. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol. 24, 1285–1292 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Clauser, K.R., Baker, P. & Burlingame, A.L. Role of accurate mass measurement (+/− 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal. Chem. 71, 2871–2882 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Haas, W. et al. Optimization and use of peptide mass measurement accuracy in shotgun proteomics. Mol. Cell. Proteomics 5, 1326–1337 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Liebler, D.C., Hansen, B.T., Davey, S.W., Tiscareno, L. & Mason, D.E. Peptide sequence motif analysis of tandem MS data with the SALSA algorithm. Anal. Chem. 74, 203–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Savitski, M.M., Nielsen, M.L. & Zubarev, R.A. ModifiComb, a new proteomic tool for mapping substoichiometric post-translational modifications, finding novel types of modifications, and fingerprinting complex protein mixtures. Mol. Cell. Proteomics 5, 935–947 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Tsur, D., Tanner, S., Zandi, E., Bafna, V. & Pevzner, P.A. Identification of post-translational modifications by blind search of mass spectra. Nat. Biotechnol. 23, 1562–1567 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Chi, A. et al. Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc. Natl. Acad. Sci. USA 104, 2193–2198 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Edelson-Averbukh, M., Pipkorn, R. & Lehmann, W.D. Analysis of protein phosphorylation in the regions of consecutive serine/threonine residues by negative ion electrospray collision-induced dissociation. Approach to pinpointing of phosphorylation sites. Anal. Chem. 79, 3476–3486 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Beynon, R.J. & Pratt, J.M. Metabolic labeling of proteins for proteomics. Mol. Cell. Proteomics 4, 857–872 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Ong, S.E. & Mann, M. Mass spectrometry–based proteomics turns quantitative. Nat. Chem. Biol. 1, 252–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, P. & Regnier, F.E. An isotope coding strategy for proteomics involving both amine and carboxyl group labeling. J. Proteome Res. 1, 443–450 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Yao, X., Freas, A., Ramirez, J., Demirev, P.A. & Fenselau, C. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal. Chem. 73, 2836–2842 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Ross, P.L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, W. et al. Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal. Chem. 75, 4818–4826 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Old, W.M. et al. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics 4, 1487–1502 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Hoffert, J.D., Pisitkun, T., Wang, G., Shen, R.F. & Knepper, M.A. Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc. Natl. Acad. Sci. USA 103, 7159–7164 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wiener, M.C., Sachs, J.R., Deyanova, E.G. & Yates, N.A. Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal. Chem. 76, 6085–6096 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W. & Gygi, S.P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. USA 100, 6940–6945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mayya, V., Rezual, K., Wu, L., Fong, M.B. & Han, D.K. Absolute quantification of multisite phosphorylation by selective reaction monitoring mass spectrometry: determination of inhibitory phosphorylation status of cyclin-dependent kinases. Mol. Cell. Proteomics 5, 1146–1157 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Resing, K.A. & Ahn, N.G. Protein phosphorylation analysis by electrospray ionization-mass spectrometry. Methods Enzymol. 283, 29–44 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Guo, L. et al. Studies of ligand-induced site-specific phosphorylation of epidermal growth factor receptor. J. Am. Soc. Mass Spectrom. 14, 1022–1031 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Zappacosta, F., Collingwood, T.S., Huddleston, M.J. & Annan, R.S. A quantitative results-driven approach to analyzing multisite protein phosphorylation: the phosphate-dependent phosphorylation profile of the transcription factor Pho4. Mol. Cell. Proteomics 5, 2019–2030 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Hegeman, A.D., Harms, A.C., Sussman, M.R., Bunner, A.E. & Harper, J.F. An isotope labeling strategy for quantifying the degree of phosphorylation at multiple sites in proteins. J. Am. Soc. Mass Spectrom. 15, 647–653 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Martin, K.H. et al. Cortactin phosphorylation sites mapped by mass spectrometry. J. Cell Sci. 119, 2851–2853 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Garcia, B.A., Shabanowitz, J. & Hunt, D.F. Characterization of histones and their post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol. 11, 66–73 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Kim, S.C. et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 23, 607–618 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Mukherjee, S., Hao, Y.H. & Orth, K. A newly discovered post-translational modification – the acetylation of serine and threonine residues. Trends Biochem. Sci. 32, 210–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Chen, Y. et al. Lysine propionylation and butyrylation are novel posttranslational modifications in histones. Mol. Cell. Proteomics 6, 812–819 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Finley, D., Ciechanover, A. & Varshavsky, A. Ubiquitin as a central cellular regulator. Cell 116, S29–S32 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Marotti, L.A. Jr., Newitt, R., Wang, Y., Aebersold, R. & Dohlman, H.G. Direct identification of a G protein ubiquitination site by mass spectrometry. Biochemistry 41, 5067–5074 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921–926 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Coon, J.J., Shabanowitz, J., Hunt, D.F. & Syka, J.E. Electron transfer dissociation of peptide anions. J. Am. Soc. Mass Spectrom. 16, 880–882 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Cooper, H.J. et al. Fourier transform ion cyclotron resonance mass spectrometry for the analysis of small ubiquitin-like modifier (SUMO) modification: identification of lysines in RanBP2 and SUMO targeted for modification during the E3 autoSUMOylation reaction. Anal. Chem. 77, 6310–6319 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Denison, C., Kirkpatrick, D.S. & Gygi, S.P. Proteomic insights into ubiquitin and ubiquitin-like proteins. Curr. Opin. Chem. Biol. 9, 69–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Pedrioli, P.G. et al. Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nat. Methods 3, 533–539 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Pickart, C.M. & Fushman, D. Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610–616 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Knuesel, M., Cheung, H.T., Hamady, M., Barthel, K.K. & Liu, X. A method of mapping protein sumoylation sites by mass spectrometry using a modified small ubiquitin-like modifier 1 (SUMO-1) and a computational program. Mol. Cell. Proteomics 4, 1626–1636 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Petroski, M.D. & Deshaies, R.J. Context of multiubiquitin chain attachment influences the rate of Sic1 degradation. Mol. Cell 11, 1435–1444 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Jeon, H.B. et al. A proteomics approach to identify the ubiquitinated proteins in mouse heart. Biochem. Biophys. Res. Commun. 357, 731–736 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Ventadour, S. et al. A new method of purification of proteasome substrates reveals polyubiquitination of 20 S proteasome subunits. J. Biol. Chem. 282, 5302–5309 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Brittain, S.M., Ficarro, S.B., Brock, A. & Peters, E.C. Enrichment and analysis of peptide subsets using fluorous affinity tags and mass spectrometry. Nat. Biotechnol. 23, 463–468 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Chernorudskiy, A.L. et al. UbiProt: a database of ubiquitylated proteins. BMC Bioinformatics [online] 8, 126 (2007).

    Article  CAS  Google Scholar 

  80. Kamata, H. et al. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649–661 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Woo, H.A. et al. Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J. Biol. Chem. 278, 47361–47364 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Meng, T.C., Buckley, D.A., Galic, S., Tiganis, T. & Tonks, N.K. Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. J. Biol. Chem. 279, 37716–37725 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Forman, H.J., Fukuto, J.M. & Torres, M. Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am. J. Physiol. Cell Physiol. 287, C246–C256 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Erwin, P.A., Lin, A.J., Golan, D.E. & Michel, T. Receptor-regulated dynamic S-nitrosylation of endothelial nitric-oxide synthase in vascular endothelial cells. J. Biol. Chem. 280, 19888–19894 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Iwakiri, Y. et al. Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein trafficking. Proc. Natl. Acad. Sci. USA 103, 19777–19782 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jaffrey, S.R. & Snyder, S.H. The biotin switch method for the detection of S-nitrosylated proteins. Sci. STKE [online] 2001, PL1 (2001).

    CAS  Google Scholar 

  87. Hao, G., Derakhshan, B., Shi, L., Campagne, F. & Gross, S.S. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Proc. Natl. Acad. Sci. USA 103, 1012–1017 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Greco, T.M. et al. Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. Proc. Natl. Acad. Sci. USA 103, 7420–7425 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jaffrey, S.R., Erdjument-Bromage, H., Ferris, C.D., Tempst, P. & Snyder, S.H. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat. Cell Biol. 3, 193–197 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Charles, R.L. et al. Protein sulfenation as a redox sensor: proteomic studies using a novel biotinylated dimedone analogue. Mol. Cell. Proteomics 6, 1473–1484 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Barrett, D.M. et al. Inhibition of protein-tyrosine phosphatases by mild oxidative stresses is dependent on S-nitrosylation. J. Biol. Chem. 280, 14453–14461 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Huang, F., Kirkpatrick, D., Jiang, X., Gygi, S. & Sorkin, A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol. Cell 21, 737–748 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Dengjel, J. et al. Quantitative proteomic assessment of very early cellular signaling events. Nat. Biotechnol. 25, 566–568 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Furdui, C.M., Lew, E.D., Schlessinger, J. & Anderson, K.S. Autophosphorylation of FGFR1 kinase is mediated by a sequential and precisely ordered reaction. Mol. Cell 21, 711–717 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Xue, Y., Zhou, F., Fu, C., Xu, Y. & Yao, X. SUMOsp: a web server for sumoylation site prediction. Nucleic Acids Res. [online] 34, W254–W257 (2006).

    Article  CAS  Google Scholar 

  96. Slawson, C., Housley, M.P. & Hart, G.W. O-GlcNAc cycling: how a single sugar post-translational modification is changing the way we think about signaling networks. J. Cell. Biochem. 97, 71–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Ulrich, H.D. Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol. 15, 525–532 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Kim, J.E. & White, F.M. Quantitative analysis of phosphotyrosine signaling networks triggered by CD3 and CD28 costimulation in Jurkat cells. J. Immunol. 176, 2833–2843 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Meng, F., Forbes, A.J., Miller, L.M. & Kelleher, N.L. Detection and localization of protein modifications by high resolution tandem mass spectrometry. Mass Spectrom. Rev. 24, 126–134 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Wolf-Yadlin, A., Hautaniemi, S., Lauffenburger, D.A. & White, F.M. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl. Acad. Sci. USA 104, 5860–5865 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from US National Institutes of Health grants CA112847 (E.S.W.), CA126240 (K.A.R.) and CA118972 (N.G.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie G Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witze, E., Old, W., Resing, K. et al. Mapping protein post-translational modifications with mass spectrometry. Nat Methods 4, 798–806 (2007). https://doi.org/10.1038/nmeth1100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing