Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A large-scale method to measure absolute protein phosphorylation stoichiometries

Abstract

The functional role of protein phosphorylation is impacted by its fractional stoichiometry. Thus, a comprehensive strategy to study phosphorylation dynamics should include an assessment of site stoichiometry. Here we report an integrated method that relies on phosphatase treatment and stable-isotope labeling to determine absolute stoichiometries of protein phosphorylation on a large scale. This approach requires the measurement of only a single ratio relating phosphatase-treated and mock-treated samples. Using this strategy we determined stoichiometries for 5,033 phosphorylation sites in triplicate analyses from Saccharomyces cerevisiae growing through mid-log phase. We validated stoichiometries at ten sites that represented the full range of values obtained using synthetic phosphopeptides and found excellent agreement. Using bioinformatics, we characterized the biological properties associated with phosphorylation sites with vastly differing absolute stoichiometries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of the method for phosphatase-based, absolute stoichiometry measurements.
Figure 2: Absolute site stoichiometries for 5,033 events in exponentially growing yeast.
Figure 3: An example of validation of a site stoichiometry by AQUA.
Figure 4: Bioinformatic analyses of site stoichiometry with respect to kinase motifs and gene ontology.
Figure 5: Evolutionary conservation of the site residues across 25 yeast species.

Similar content being viewed by others

References

  1. Grimsrud, P.A., Swaney, D.L., Wenger, C.D., Beauchene, N.A. & Coon, J.J. Phosphoproteomics for the masses. ACS Chem. Biol. 5, 105–119 (2010).

    Article  CAS  Google Scholar 

  2. Macek, B., Mann, M. & Olsen, J.V. Global and site-specific quantitative phosphoproteomics: principles and applications. Annu. Rev. Pharmacol. Toxicol. 49, 199–221 (2009).

    Article  CAS  Google Scholar 

  3. Thingholm, T.E., Jensen, O.N. & Larsen, M.R. Analytical strategies for phosphoproteomics. Proteomics 9, 1451–1468 (2009).

    Article  CAS  Google Scholar 

  4. Boersema, P.J., Mohammed, S. & Heck, A.J.R. Phosphopeptide fragmentation and analysis by mass spectrometry. J. Mass Spectrom. 44, 861–878 (2009).

    Article  CAS  Google Scholar 

  5. Witze, E.S., Old, W.M., Resing, K.A. & Ahn, N.G. Mapping protein post-translational modifications with mass spectrometry. Nat. Methods 4, 798–806 (2007).

    Article  CAS  Google Scholar 

  6. Choudhary, C. et al. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol. Cell 36, 326–339 (2009).

    Article  CAS  Google Scholar 

  7. Holt, L.J. et al. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325, 1682–1686 (2009).

    Article  CAS  Google Scholar 

  8. Huttlin, E.L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010).

    Article  CAS  Google Scholar 

  9. Olsen, J.V. et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3, ra3 (2010).

    Article  Google Scholar 

  10. Wu, R. et al. Correct interpretation of comprehensive phosphorylation dynamics requires normalization by protein expression changes. Mol. Cell. Proteomics published online, doi:10.1074/mcp.M111.009654 (7 May 2011).

  11. Cooper, J.A. & Hunter, T. Identification and characterization of cellular targets for tyrosine protein kinases. J. Biol. Chem. 258, 1108–1115 (1983).

    CAS  PubMed  Google Scholar 

  12. Stukenberg, P.T. et al. Systematic identification of mitotic phosphoproteins. Curr. Biol. 7, 338–348 (1997).

    Article  CAS  Google Scholar 

  13. Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W. & Gygi, S.P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. USA 100, 6940–6945 (2003).

    Article  CAS  Google Scholar 

  14. Steen, H., Jebanathirajah, J.A., Springer, M. & Kirschner, M.W. Stable isotope-free relative and absolute quantitation of protein phosphorylation stoichiometry by MS. Proc. Natl. Acad. Sci. USA 102, 3948–3953 (2005).

    Article  CAS  Google Scholar 

  15. Carr, S.A., Huddleston, M.J. & Annan, R.S. Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal. Biochem. 239, 180–192 (1996).

    Article  CAS  Google Scholar 

  16. Guo, L. et al. Studies of ligand-induced site-specific phosphorylation of epidermal growth factor receptor. J. Am. Soc. Mass Spectrom. 14, 1022–1031 (2003).

    Article  CAS  Google Scholar 

  17. Steen, J.A.J. et al. Different phosphorylation states of the anaphase promoting complex in response to antimitotic drugs: a quantitative proteomic analysis. Proc. Natl. Acad. Sci. USA 105, 6069–6074 (2008).

    Article  CAS  Google Scholar 

  18. Jin, L.L. et al. Measurement of protein phosphorylation stoichiometry by selected reaction monitoring mass spectrometry. J. Proteome Res. 9, 2752–2761 (2010).

    Article  CAS  Google Scholar 

  19. Stemmann, O., Zou, H., Gerber, S.A., Gygi, S.P. & Kirschner, M.W. Dual inhibition of sister chromatid separation at metaphase. Cell 107, 715–726 (2001).

    Article  CAS  Google Scholar 

  20. Atrih, A. et al. Stoichiometric quantification of Akt phosphorylation using LC-MS/MS. J. Proteome Res. 9, 743–751 (2010).

    Article  CAS  Google Scholar 

  21. Zhang, X., Jin, Q.K., Carr, S.A. & Annan, R.S. N-terminal peptide labeling strategy for incorporation of isotopic tags: a method for the determination of site-specific absolute phosphorylation stoichiometry. Rapid Commun. Mass Spectrom. 16, 2325–2332 (2002).

    Article  CAS  Google Scholar 

  22. Bonenfant, D. et al. Quantitation of changes in protein phosphorylation: a simple method based on stable isotope labeling and mass spectrometry. Proc. Natl. Acad. Sci. USA 100, 880–885 (2003).

    Article  CAS  Google Scholar 

  23. Domanski, D., Murphy, L.C. & Borchers, C.H. Assay development for the determination of phosphorylation stoichiometry using multiple reaction monitoring methods with and without phosphatase treatment: application to breast cancer signaling pathways. Anal. Chem. 82, 5610–5620 (2010).

    Article  CAS  Google Scholar 

  24. Hegeman, A.D., Harms, A.C., Sussman, M.R., Bunner, A.E. & Harper, J.F. An isotope labeling strategy for quantifying the degree of phosphorylation at multiple sites in proteins. J. Am. Soc. Mass Spectrom. 15, 647–653 (2004).

    Article  CAS  Google Scholar 

  25. Johnson, H., Eyers, C.E., Eyers, P.A., Beynon, R.J. & Gaskell, S.J. Rigorous determination of the stoichiometry of protein phosphorylation using mass spectrometry. J. Am. Soc. Mass Spectrom. 20, 2211–2220 (2009).

    Article  CAS  Google Scholar 

  26. Kanshin, E. et al. The stoichiometry of protein phosphorylation in adipocyte lipid droplets: Analysis by N-terminal isotope tagging and enzymatic dephosphorylation. Proteomics 9, 5067–5077 (2009).

    Article  CAS  Google Scholar 

  27. Pflieger, D. et al. Quantitative proteomic analysis of protein complexes. Mol. Cell. Proteomics 7, 326–346 (2008).

    Article  CAS  Google Scholar 

  28. Previs, M.J. et al. Quantification of protein phosphorylation by liquid chromatography-mass spectrometry. Anal. Chem. 80, 5864–5872 (2008).

    Article  CAS  Google Scholar 

  29. Broberg, A. High-performance liquid chromatography/electrospray ionization ion-trap mass spectrometry for analysis of oligosaccharides derivatized by reductive amination and N,N-dimethylation. Carbohydr. Res. 342, 1462–1469 (2007).

    Article  CAS  Google Scholar 

  30. Elias, J.E. & Gygi, S.P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007).

    Article  CAS  Google Scholar 

  31. Albuquerque, C.P. et al. A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol. Cell. Proteomics 7, 1389–1396 (2008).

    Article  CAS  Google Scholar 

  32. Gnad, F. et al. High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast. Proteomics 9, 4642–4652 (2009).

    Article  CAS  Google Scholar 

  33. Li, X. et al. Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae. J. Proteome Res. 6, 1190–1197 (2007).

    Article  CAS  Google Scholar 

  34. Peng, K., Radivojac, P., Vucetic, S., Dunker, A.K. & Obradovic, Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7, 208 (2006).

    Article  Google Scholar 

  35. Taylor, S.S., Knighton, D.R., Zheng, J.H., Teneyck, L.F. & Sowadski, J.M. Structural framework for the protein-kinase family. Annu. Rev. Cell Biol. 8, 429–462 (1992).

    Article  CAS  Google Scholar 

  36. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  37. Guerra, B. & Issinger, O.G. Protein kinase CK2 in human diseases. Curr. Med. Chem. 15, 1870–1886 (2008).

    Article  CAS  Google Scholar 

  38. Haas, W. et al. Optimization and use of peptide mass measurement accuracy in shotgun proteomics. Mol. Cell. Proteomics 5, 1326–1337 (2006).

    Article  CAS  Google Scholar 

  39. Eng, J.K., McCormack, A.L. & Yates, J.R. An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  Google Scholar 

  40. Bakalarski, C.E. et al. The impact of peptide abundance and dynamic range on stable-isotope-based quantitative proteomic analyses. J. Proteome Res. 7, 4756–4765 (2008).

    Article  CAS  Google Scholar 

  41. Villen, J. & Gygi, S.P. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat. Protoc. 3, 1630–1638 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US National Institutes of Health grants (HG3456) to S.P.G. We thank all members of the Gygi lab for help, especially R.A. Everley for his help with instrumentation and L. Ting for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.P.G. and R.W. designed the research. R.W., W.H., N.D., E.L.H., B.Z., M.E.S. and S.P.G. participated in the data generation, analysis and interpretation. R.W. and S.P.G. wrote the manuscript and all authors edited it.

Corresponding author

Correspondence to Steven P Gygi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1 and 5 (PDF 381 kb)

Supplementary Table 2

Peptides identified in experiment 1. (XLSX 14310 kb)

Supplementary Table 3

Peptides identified in experiment 2. (XLSX 14521 kb)

Supplementary Table 4

Peptides identified in experiment 3. (XLSX 15000 kb)

Supplementary Table 6

Site stoichiometries obtained in biological triplicate experiments. (XLSX 584 kb)

Supplementary Table 7

Site stoichiometries for events described as Cdk1substrates. (XLSX 21 kb)

Supplementary Table 8

Examples of phosphorylation sites with high stoichiometries. (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, R., Haas, W., Dephoure, N. et al. A large-scale method to measure absolute protein phosphorylation stoichiometries. Nat Methods 8, 677–683 (2011). https://doi.org/10.1038/nmeth.1636

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1636

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research