Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA)

Abstract

Engineered zinc-finger nucleases (ZFNs) enable targeted genome modification. Here we describe context-dependent assembly (CoDA), a platform for engineering ZFNs using only standard cloning techniques or custom DNA synthesis. Using CoDA-generated ZFNs, we rapidly altered 20 genes in Danio rerio, Arabidopsis thaliana and Glycine max. The simplicity and efficacy of CoDA will enable broad adoption of ZFN technology and make possible large-scale projects focused on multigene pathways or genome-wide alterations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of CoDA.

Similar content being viewed by others

References

  1. Carroll, D. Gene Ther. 15, 1463–1468 (2008).

    Article  CAS  Google Scholar 

  2. Cathomen, T. & Joung, J.K. Mol. Ther. 16, 1200–1207 (2008).

    Article  CAS  Google Scholar 

  3. Kim, J.S., Lee, H.J. & Carroll, D. Nat. Methods 7, 91 (author reply, 91–92) (2010).

    Article  CAS  Google Scholar 

  4. Ramirez, C.L. et al. Nat. Methods 5, 374–375 (2008).

    Article  CAS  Google Scholar 

  5. Kim, H.J., Lee, H.J., Kim, H., Cho, S.W. & Kim, J.S. Genome Res. 19, 1279–1288 (2009).

    Article  CAS  Google Scholar 

  6. Lee, H.J., Kim, E. & Kim, J.S. Genome Res. 20, 81–89 (2010).

    Article  CAS  Google Scholar 

  7. Maeder, M.L. et al. Mol. Cell 31, 294–301 (2008).

    Article  CAS  Google Scholar 

  8. Doyon, Y. et al. Nat. Biotechnol. 26, 702–708 (2008).

    Article  CAS  Google Scholar 

  9. Pearson, H. Nature 455, 160–164 (2008).

    Article  CAS  Google Scholar 

  10. Isalan, M., Choo, Y. & Klug, A. Proc. Natl. Acad. Sci. USA 94, 5617–5621 (1997).

    Article  CAS  Google Scholar 

  11. Isalan, M., Klug, A. & Choo, Y. Biochemistry 37, 12026–12033 (1998).

    Article  CAS  Google Scholar 

  12. Foley, J.E. et al. PLoS ONE 4, e4348 (2009).

    Article  Google Scholar 

  13. Zou, J. et al. Cell Stem Cell 5, 97–110 (2009).

    Article  CAS  Google Scholar 

  14. Zhang, F. et al. Proc. Natl. Acad. Sci. USA 107, 12028–12033 (2010).

    Article  CAS  Google Scholar 

  15. Townsend, J.A. et al. Nature 459, 442–445 (2009).

    Article  CAS  Google Scholar 

  16. Maeder, M.L., Thibodeau-Beganny, S., Sander, J.D., Voytas, D.F. & Joung, J.K. Nat. Protoc. 4, 1471–1501 (2009).

    Article  CAS  Google Scholar 

  17. Wright, D.A. et al. Nat. Protoc. 1, 1637–1652 (2006).

    Article  Google Scholar 

  18. Foley, J.E. et al. Nat. Protoc. 4, 1855–1867 (2009).

    Article  CAS  Google Scholar 

  19. Govindarajulu, M., Elmore, J.M., Fester, T. & Taylor, C.G. Mol. Plant Microbe Interact. 21, 1027–1035 (2008).

    Article  CAS  Google Scholar 

  20. Tamura, K., Dudley, J., Nei, M. & Kumar, S. Mol. Biol. Evol. 24, 1596–1599 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants R01 GM088040 (J.K.J. and R.T.P.), R01 GM069906 (J.K.J.), R24 GM078369 (J.K.J.), R01 CA140188 (J.-R.J.Y.), R01 GM081602 (A.J.G.), RC2 MH089956 (A.J.G.), K01 AG031300 (J.-R.J.Y.), K01 AR055619 (D.M.L.) and T32 CA009216 (J.D.S. and J.S.B.); by National Science Foundation grant DBI 0923827 (D.F.V., D.D. and J.K.J.); by the Claflin Distinguished Scholar Award (J.-R.J.Y.); by the Minnesota Soybean Research and Promotion Council (S.J.C. and R.M.S.); and by Alex's Lemonade Stand and the Leukemia Research Foundation (D.M.L.).

Author information

Authors and Affiliations

Authors

Contributions

J.D.S. and J.K.J. conceived of the CoDA engineering method; J.D.S., S.J.C., D.M.L., R.M.S., A.J.G., D.F.V., R.T.P., J.-R.J.Y. and J.K.J. designed research; J.D.S., E.J.D., M.J.G., L.C., F.Z., D.C., S.J.C., J.S.B., S.T.-B., Y.Q., C.J.P., E.H., M.L.M. and C.K. performed experiments; J.D.S., D.R. and D.D. identified potential genomic CoDA target sites; and J.D.S., R.M.S., D.F.V., R.T.P., J.-R.J.Y. and J.K.J. wrote the paper.

Corresponding author

Correspondence to J Keith Joung.

Ethics declarations

Competing interests

F.Z. and D.F.V. are paid for work performed for Cellectis Plant Sciences.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–5 and Supplementary Discussion (PDF 1275 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sander, J., Dahlborg, E., Goodwin, M. et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8, 67–69 (2011). https://doi.org/10.1038/nmeth.1542

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1542

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research