Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Filter-based hybridization capture of subgenomes enables resequencing and copy-number detection

Abstract

To exploit contemporary sequencing technologies for targeted genetic analyses, we developed a hybridization enrichment strategy for DNA capture that uses PCR products as subgenomic traps. We applied this strategy to 115 kilobases of the human genome encompassing 47 genes implicated in cardiovascular disease. Massively parallel sequencing of captured subgenomic libraries interrogated 99.8% of targeted nucleotides ≥20 times (40,000-fold enrichment), enabling sensitive and specific detection of sequence variation and copy-number variation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Captured subgenomic library uniformity and SNP detection for HCM and HDL subgenomes.
Figure 3: Detection of CNV.

Similar content being viewed by others

References

  1. Maron, B.J. et al. Circulation 92, 785–789 (1995).

    Article  CAS  Google Scholar 

  2. Alcalai, R., Seidman, J.G. & Seidman, C.E. J. Cardiovasc. Electrophysiol. 19, 104–110 (2008).

    PubMed  Google Scholar 

  3. Hovingh, G.K. et al. Curr. Opin. Lipidol. 16, 139–145 (2005).

    Article  CAS  Google Scholar 

  4. Willer, C.J. et al. Nat. Genet. 40, 161–169 (2008).

    Article  CAS  Google Scholar 

  5. Kim, J.B. et al. Science 316, 1481–1484 (2007).

    Article  CAS  Google Scholar 

  6. Hillier, L.W. et al. Nat. Methods 5, 183–188 (2008).

    Article  CAS  Google Scholar 

  7. Chiang, D.Y. et al. Nat. Methods 6, 99–103 (2009).

    Article  CAS  Google Scholar 

  8. Goossens, D. et al. Hum. Mutat. 30, 472–476 (2009).

    Article  Google Scholar 

  9. Lovett, M. Curr. Protoc. Hum. Genet. 6.3 (2001).

  10. Bashiardes, S. et al. Nat. Methods 2, 63–69 (2005).

    Article  CAS  Google Scholar 

  11. Albert, T.J. et al. Nat. Methods 4, 903–905 (2007).

    Article  CAS  Google Scholar 

  12. Gnirke, A. et al. Nat. Biotechnol. 27, 182–189 (2009).

    Article  CAS  Google Scholar 

  13. Porreca, G.J. et al. Nat. Methods 4, 931–936 (2007).

    Article  CAS  Google Scholar 

  14. Bentley, D.R. et al. Nature 456, 53–59 (2008).

    Article  CAS  Google Scholar 

  15. Moore, D. & Dowhan, D. Curr. Protoc. Mol. Biol. 2.1A (2002).

  16. Parnes, J.R. et al. Proc. Natl. Acad. Sci. USA 78, 2253–2257 (1981).

    Article  CAS  Google Scholar 

  17. Brown, T. Curr. Protoc. Mol. Biol. 2.9B (2001).

  18. Rees, W.A., Yager, T.D., Korte, J. & von Hippel, P.H. Biochemistry 32, 137–144 (1993).

    Article  CAS  Google Scholar 

  19. Li, H., Ruan, J. & Durbin, R. Genome Res. 18, 1851–1858 (2008).

    Article  CAS  Google Scholar 

  20. Kharchenko, P.V., Tolstorukov, M.Y. & Park, P.J. Nat. Biotechnol. 26, 1351–1359 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Aach, J. Gorham, J. Kim, J.B. Li and L. Wang for helpful discussions and advice; J. Kastelein and J.A. Kuivenhoven for HDL subject genomic DNA and for assistance in selecting HDL target genes; S. Depalma for analysis of Affymetrix custom sequencing array data; L. Merrill and D. Sonkin at Partners Center for Personalized Genetic Medicine of Harvard Medical School for Illumina sequencing and support; B. Richter, D. Gurgul, S. Roylance, J. Xu and A. Zschau at Partners Healthcare for access to high-performance computing cluster and data storage; T. Levi and B. McDonough for subject recruitment and genomic DNA isolation; S. Cox and M. Iaculli for generating HCM amplimers; and members of the Drosophila RNAi Screening Center for access to their Molecular Devices Analyst GT plate reader. G.K.H. was supported by grants from the Dutch Heart Association (NHS 2007R001) and Saal van Zwanenbergstichting. This work was supported by grants from the National Cancer Institute, the National Heart, Lung and Blood Institute, the Howard Hughes Medical Institute, and the Leducq Foundation.

Author information

Authors and Affiliations

Authors

Contributions

D.S.H., G.K.H., J.G.S. and C.E.S. conceived and designed the study; D.S.H. and G.K.H. constructed libraries and target concatemers; D.S.H. analyzed sequence data; O.I. and R.K. sequenced the libraries; H.L.R., D.S.H. and R.K. designed and amplified HCM sequences; D.S.H., J.G.S. and C.E.S. wrote the manuscript.

Corresponding author

Correspondence to Christine E Seidman.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1–7 and Supplementary Methods (PDF 5040 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herman, D., Hovingh, G., Iartchouk, O. et al. Filter-based hybridization capture of subgenomes enables resequencing and copy-number detection. Nat Methods 6, 507–510 (2009). https://doi.org/10.1038/nmeth.1343

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1343

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing