Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

V2O5 nanofibre sheet actuators

Abstract

Vanadium oxides, such as V2O5, are promising for lithium-ion batteries1,2, catalysis3, electrochromic devices4,5 and sensors6,7. Vanadium oxides were proposed more than a decade ago for another redox-dependent application: the direct conversion of electrical energy to mechanical energy in actuators (artificial muscles)8. Although related conducting polymer8,9 and carbon nanotube actuators10 have been demonstrated, electromechanical actuators based on vanadium oxides have not be realized. V2O5 nanofibres6,11 and nanotubes12 provide the potential advantages of low-cost synthesis by sol–gel routes and high charging capacity and long cycle life13,14. Here, we demonstrate electromechanical actuation for obtained high modulus V2O5 sheets comprising entangled V2O5 nanofibres. The high surface area of these V2O5 sheets facilitates electrochemical charge injection and intercalation that causes the electromechanical actuation. We show that the V2O5 sheets provide high Young's modulus, high actuator-generated stress, and high actuator stroke at low applied voltage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Images of V2O5 nanofibres and sheets.
Figure 2: Strain generation of a V2O5 nanofibre sheet actuator.
Figure 3: Stress–strain curve under tensile load for a free-standing V2O5 sheet.
Figure 4: Generated stress (a) and applied potential (b) for a V2O5 nanofibre sheet as a function of time.

Similar content being viewed by others

References

  1. Poizot, P., Grugeon, S., Dupont, L. & Tarascon J.-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).

    Article  CAS  Google Scholar 

  2. Julien, C., Haro-Poniatowski, E., Camacho-López, M.A., Escobar-Alarcón, L. & Jiménez-Jarquín, J. Growth of V2O5 thin films by pulsed laser deposition and their applications in lithium microbatteries. Mater. Sci. Eng. B 65, 170–176 (1999).

    Article  Google Scholar 

  3. Ponzi, M., Duschatzky, C., Carrascull, A. & Ponzi, E. Obtaining benzaldehyde via promoted V2O5 catalysts. Appl. Catal. A 169, 373–379 (1998).

    Article  CAS  Google Scholar 

  4. Granqvist, C.G. Handbook of Inorganic Electrochromic Materials (Elsevier Science, Amsterdam, 1995).

    Google Scholar 

  5. Talledo, A. & Granqvist, C.G. Electrochromic vanadium pentoxide based film - structural, electrochemical, and optical properties. J. Appl. Phys. 77, 4655–4666 (1995).

    Article  CAS  Google Scholar 

  6. Livage, J. Vanadium Pentoxide Gels. Chem. Mater. 3, 578–593 (1991).

    Article  CAS  Google Scholar 

  7. Micocci, G. et al. Properties of vanadium oxide thin films for ethanol sensor. J. Vac. Sci. Technol. A 15, 34–38 (1997).

    Article  CAS  Google Scholar 

  8. Baughman, R.H. et al. in Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics, and Molecular Electronics Vol. 182 of NATO ASI Series E: Applied Sciences (eds Bredas, J.L. & Chance, R.R.) 559–582 (Kluwer, Dordrecht, Netherlands, 1990).

    Book  Google Scholar 

  9. Jager, E.W.H., Smela, E. & Inganäs, O. Microfabricating conjugated polymer actuators. Science 290, 1540–1545 (2000).

    Article  CAS  Google Scholar 

  10. Baughman, R.H. et al. Carbon nanotube actuators. Science 284, 1340–1344 (1999).

    Article  CAS  Google Scholar 

  11. Bailey, J.K., Pozarnsky, G.A. & Mecartney, M.L. The direct observation of structural development during vanadium pentoxide gelation. J. Mater. Res. 7, 2530–2537 (1992).

    Article  CAS  Google Scholar 

  12. Muhr, H.-J. et al. Vanadium oxide nanotubes - A new flexible vanadate nanophase. Adv. Mater. 12, 231–233 (2000).

    Article  CAS  Google Scholar 

  13. Cazzanelli, E., Mariotto, G., Passerini, F. & Decker, F. Spectroscopic investigations of Li-intercalated V2O5 polycrystalline films. Solid State Ionics 70/71, 412–416 (1994).

    Article  Google Scholar 

  14. Coustier, F., Passerini, S. & Smyrl, W.H. A 400 mAh/g aerogel-like V2O5 cathode for rechargeable lithium batteries. J. Electrochem. Soc. 145, L73–L74 (1998).

    Article  CAS  Google Scholar 

  15. Livage, J. Synthesis of polyoxovanadates via “chimie douce”. Coord. Chem. Rev. 178–180, 999–1018 (1998).

  16. Yao, T., Oka, Y., & Yamamoto, N. Layered structures of vanadium pentoxide gels. Mater. Res. Bull. 27, 669–675 (1992).

    Article  CAS  Google Scholar 

  17. Huber, J.E., Fleck, N.A., & Ashby, M.F. The selection of mechanical actuators based on performance indices. Proc. R. Soc. Lond. A 453, 2185–2205 (1997).

    Article  Google Scholar 

  18. Muster, J. et al. Electrical transport through individual vanadium pentoxide nanowires. Adv. Mater. 12, 420–423 (2000).

    Article  CAS  Google Scholar 

  19. Enjalbert, R. & Galy, J. A refinement of the structure of V2O5 . Acta Crystallogr. A 42, 1467–1469 (1986).

    Google Scholar 

  20. Meulenkamp, E.A., van Klinken, W. & Schlatmann, A.R. In-situ X-ray diffraction of Li intercalation in sol-gel V2O5 films. Solid State Ionics 126, 235–244 (1999).

    Article  CAS  Google Scholar 

  21. S̆urca, A., Orel, B., Draz̆ic, G. & Pihlar, B. Ex situ and in situ infrared spectroelectrochemical investigations of V2O5 crystalline films. J. Electrochem. Soc. 146, 232–242 (1999).

    Article  Google Scholar 

  22. Petkov, V. et al. Structure of V2O5·nH2O xerogel solved by the atomic pair distribution function technique. J. Am. Chem. Soc. 124, 10157–10162 (2002).

    Article  CAS  Google Scholar 

  23. Pan, Z.W., Dai, Z.R. & Wang, Z.L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001).

    Article  CAS  Google Scholar 

  24. Gabriel, J.-C.P. & Davidson, P. New trends in colloidal liquid crystals based on mineral moieties. Adv. Mater. 12, 9–20 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to M. Schmid, U. Waizmann, M. Riek and T. Reindl for technical assistance and to M. Burghard and X. C. Shen for helpful discussions. This work was partially supported by the Defense Advanced Projects Agency grants N00173-99-2000 and MDA 972-02-C-0005. G.G. and G.T.K. thank the Alexander von Humboldt Foundation for support. Additional support from the Robert A. Welch Foundation is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Gu, Siegmar Roth or Ray H. Baughman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, G., Schmid, M., Chiu, PW. et al. V2O5 nanofibre sheet actuators. Nature Mater 2, 316–319 (2003). https://doi.org/10.1038/nmat880

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat880

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing