Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reconfiguring active particles by electrostatic imbalance

Abstract

Active materials represent a new class of condensed matter in which motile elements may collectively form dynamic, global structures out of equilibrium1,2,3. Here, we present a general strategy to reconfigure active particles into various collective states by introducing imbalanced interactions. We demonstrate the concept with computer simulations of self-propelled colloidal spheres, and experimentally validate it in a two-dimensional (2D) system of metal–dielectric Janus colloids subjected to perpendicular a.c. electric fields. The mismatched, frequency-dependent dielectric responses of the two hemispheres of the colloids allow simultaneous control of particle motility and colloidal interactions. We realized swarms, chains, clusters and isotropic gases from the same precursor particle by changing the electric-field frequency. Large-scale polar waves, vortices and jammed domains are also observed, with the persistent time-dependent evolution of their collective structure evoking that of classical materials. This strategy of asymmetry-driven active self-organization should generalize rationally to other active 2D and three-dimensional (3D) materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of collective active states formed by spheres with imbalanced, off-centred charges.
Figure 2: Experimental realization of the predicted active states from the same Janus colloidal spheres.
Figure 3: Time evolution in the swarming state.
Figure 4: Dynamic state diagram from 2D simulations.

Similar content being viewed by others

References

  1. Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).

    Article  CAS  Google Scholar 

  2. Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, O. & Bartolo, D. Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 95–98 (2013).

    Article  CAS  Google Scholar 

  3. Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).

    Article  CAS  Google Scholar 

  4. Lu, P. J. & Weitz, D. A. Colloidal particles: crystals, glasses, and gels. Annu. Rev. Condens. Matter Phys. 4, 217–233 (2013).

    Article  CAS  Google Scholar 

  5. Wang, Y. et al. Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012).

    Article  CAS  Google Scholar 

  6. Poon, W. C. K. From Clarkia to Escherichia and Janus: the physics of natural and synthetic active colloids. Proc. Intl Sch. Phys. Enrico Fermi 184, 317–386 (2013).

    CAS  Google Scholar 

  7. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013).

    Article  CAS  Google Scholar 

  8. Wang, W., Duan, W., Ahmed, S., Sen, A. & Mallouk, T. E. From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors. Acc. Chem. Res. 48, 1938–1946 (2015).

    Article  CAS  Google Scholar 

  9. Schaller, V., Weber, C., Semmrich, C., Frey, E. & Bausch, A. R. Polar patterns of driven filaments. Nature 467, 73–77 (2010).

    Article  CAS  Google Scholar 

  10. Rubenstein, M., Cornejo, A. & Nagpal, R. Programmable self-assembly in a thousand-robot swarm. Science 345, 795–799 (2014).

    Article  CAS  Google Scholar 

  11. Snezhko, A. & Aranson, I. S. Magnetic manipulation of self-assembled colloidal asters. Nature Mater. 10, 698–703 (2011).

    Article  CAS  Google Scholar 

  12. Walther, A. & Müller, A. H. E. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113, 5194–5261 (2013).

    Article  CAS  Google Scholar 

  13. Zhang, J., Luijten, E. & Granick, S. Toward design rules of directional Janus colloidal assembly. Annu. Rev. Phys. Chem. 66, 581–600 (2015).

    Article  CAS  Google Scholar 

  14. Shah, A. A., Schultz, B., Zhang, W., Glotzer, S. C. & Solomon, M. J. Actuation of shape-memory colloidal fibres of Janus ellipsoids. Nature Mater. 14, 117–124 (2015).

    Article  CAS  Google Scholar 

  15. Gangwal, S., Cayre, O. J., Bazant, M. Z. & Velev, O. D. Induced-charge electrophoresis of metallodielectric particles. Phys. Rev. Lett. 100, 058302 (2008).

    Article  Google Scholar 

  16. Nishiguchi, D. & Sano, M. Mesoscopic turbulence and local order in Janus particles self-propelling under an ac electric field. Phys. Rev. E 92, 052309 (2015).

    Article  Google Scholar 

  17. de Gennes, P. G. & Pincus, P. A. Pair correlations in a ferromagnetic colloid. Phys. kondens. Mater. 11, 189–198 (1970).

    Google Scholar 

  18. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995).

    Article  CAS  Google Scholar 

  19. Wittkowski, R. et al. Scalar φ4 field theory for active-particle phase separation. Nature Commun. 5, 4351 (2014).

    Article  CAS  Google Scholar 

  20. Buttinoni, I. et al. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 110, 238301 (2013).

    Article  Google Scholar 

  21. Yethiraj, A. & van Blaaderen, A. A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature 421, 513–517 (2003).

    Article  CAS  Google Scholar 

  22. Zhang, J., Yan, J. & Granick, S. Directed self-assembly pathways of active colloidal clusters. Angew. Chem. Int. Ed. 55, 5166–5169 (2016).

    Article  CAS  Google Scholar 

  23. Rovigatti, L., Russo, J. & Sciortino, F. No evidence of gas-liquid coexistence in dipolar hard spheres. Phys. Rev. Lett. 107, 237801 (2011).

    Article  Google Scholar 

  24. Wensink, H. H. et al. Meso-scale turbulence in living fluids. Proc. Natl Acad. Sci. USA 109, 14308–14313 (2012).

    Article  CAS  Google Scholar 

  25. D’Orsogna, M. R., Chuang, Y. L., Bertozzi, A. L. & Chayes, L. S. Self-propelled particles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett. 96, 104302 (2006).

    Article  Google Scholar 

  26. Israelachvili, J. N. Intermolecular and Surface Forces 3rd edn (Academic, 2011).

    Google Scholar 

  27. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  28. Kumar, N., Soni, H., Ramaswamy, S. & Sood, A. K. Flocking at a distance in active granular matter. Nature Commun. 5, 4688 (2014).

    Article  CAS  Google Scholar 

  29. Happel, J. & Brenner, H. Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media Ch. 3 (Prentice-Hall, 1965).

    Google Scholar 

  30. Yan, J., Bloom, M., Bae, S. C., Luijten, E. & Granick, S. Linking synchronization to self-assembly using magnetic Janus colloids. Nature 491, 578–581 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The experiments were supported by the US Department of Energy, Division of Materials Science, under Award DE-FG02-07ER46471 through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign. The simulations were supported by the National Science Foundation through Grant No. DMR-1310211 and Grant No. DMR-1121262 to the Materials Research Center at Northwestern University (M.H. and E.L.). We acknowledge support from the Quest high-performance computing facility at Northwestern University. We are indebted to N. Wu and M. Sano for illuminating discussions. S.G. acknowledges support by the Institute for Basic Science, project code IBS-R020-D1.

Author information

Authors and Affiliations

Authors

Contributions

J.Y. and S.G. initiated this study. J.Y., J.Z. and C.X. performed the experiment and analysed the data. M.H. and E.L. designed the model and performed the simulation. All authors contributed to the writing of the paper.

Corresponding authors

Correspondence to Erik Luijten or Steve Granick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information (PDF 7200 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 18590 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 28880 kb)

Supplementary Movie 3

Supplementary Movie 3 (MOV 11007 kb)

Supplementary Movie 4

Supplementary Movie 4 (MOV 1148 kb)

Supplementary Movie 5

Supplementary Movie 5 (MOV 578 kb)

Supplementary Movie 6

Supplementary Movie 6 (MOV 1223 kb)

Supplementary Movie 7

Supplementary Movie 7 (MOV 3084 kb)

Supplementary Movie 8

Supplementary Movie 8 (MOV 22257 kb)

Supplementary Movie 9

Supplementary Movie 9 (MOV 17231 kb)

Supplementary Movie 10

Supplementary Movie 10 (MOV 5550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Han, M., Zhang, J. et al. Reconfiguring active particles by electrostatic imbalance. Nature Mater 15, 1095–1099 (2016). https://doi.org/10.1038/nmat4696

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4696

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics