Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strong interfacial exchange field in the graphene/EuS heterostructure

Abstract

Exploiting 2D materials for spintronic applications can potentially realize next-generation devices featuring low power consumption and quantum operation capability1,2,3. The magnetic exchange field (MEF) induced by an adjacent magnetic insulator enables efficient control of local spin generation and spin modulation in 2D devices without compromising the delicate material structures4,5. Using graphene as a prototypical 2D system, we demonstrate that its coupling to the model magnetic insulator (EuS) produces a substantial MEF (>14 T) with the potential to reach hundreds of tesla, which leads to orders-of-magnitude enhancement of the spin signal originating from the Zeeman spin Hall effect. Furthermore, the new ferromagnetic ground state of Dirac electrons resulting from the strong MEF may give rise to quantized spin-polarized edge transport. The MEF effect shown in our graphene/EuS devices therefore provides a key functionality for future spin logic and memory devices based on emerging 2D materials in classical and quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and characterization of graphene/EuS heterostructures.
Figure 2: Zeeman spin Hall effect in graphene/EuS heterostructures.
Figure 3: Estimate of the graphene/EuS interfacial exchange field using Zeeman spin Hall signals.
Figure 4: Effect of strong interfacial exchange field in the quantum Hall regime.

Similar content being viewed by others

References

  1. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, U571–U574 (2007).

    Article  Google Scholar 

  2. Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nature Nanotech. 9, 794–807 (2014).

    Article  CAS  Google Scholar 

  3. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys. 10, 343–350 (2014).

    Article  CAS  Google Scholar 

  4. Haugen, H., Huertas-Hernando, D. & Brataas, A. Spin transport in proximity-induced ferromagnetic graphene. Phys. Rev. B 77, 115406 (2008).

    Article  Google Scholar 

  5. Yang, H. X. et al. Proximity effects induced in graphene by magnetic insulators: first-principles calculations on spin filtering and exchange-splitting gaps. Phys. Rev. Lett. 110, 046603 (2013).

    Article  CAS  Google Scholar 

  6. Li, B. et al. Superconducting spin switch with infinite magnetoresistance induced by an internal exchange field. Phys. Rev. Lett. 110, 097001 (2013).

    Article  Google Scholar 

  7. Semenov, Y. G. Spin field effect transistor with a graphene channel. Appl. Phys. Lett. 91, 153105 (2007).

    Article  Google Scholar 

  8. Abanin, D. A. et al. Giant nonlocality near the Dirac point in graphene. Science 332, 328–330 (2011).

    Article  CAS  Google Scholar 

  9. Abanin, D. A., Gorbachev, R. V., Novoselov, K. S., Geim, A. K. & Levitov, L. S. Giant spin-Hall effect induced by the Zeeman interaction in graphene. Phys. Rev. Lett. 107, 096601 (2011).

    Article  CAS  Google Scholar 

  10. Moodera, J. S., Santos, T. S. & Nagahama, T. The phenomena of spin-filter tunnelling. J. Phys. Condens. Matter 19, 165202 (2007).

    Article  Google Scholar 

  11. Wei, P. et al. Exchange-coupling-induced symmetry breaking in topological insulators. Phys. Rev. Lett. 110, 186807 (2013).

    Article  Google Scholar 

  12. Swartz, A. G., Odenthal, P. M., Hao, Y., Ruoff, R. S. & Kawakami, R. K. Integration of the ferromagnetic insulator EuO onto graphene. ACS Nano 6, 10063–10069 (2012).

    Article  CAS  Google Scholar 

  13. Swartz, A. G. et al. Integrating MBE materials with graphene to induce novel spin-based phenomena. J. Vac. Sci. Technol. B 31, 04D105 (2013).

    Article  Google Scholar 

  14. Nair, R. R. et al. Spin-half paramagnetism in graphene induced by point defects. Nature Phys. 8, 199–202 (2012).

    Article  CAS  Google Scholar 

  15. McCreary, K. M., Swartz, A. G., Han, W., Fabian, J. & Kawakami, R. K. Magnetic moment formation in graphene detected by scattering of pure spin currents. Phys. Rev. Lett. 109, 186604 (2012).

    Article  Google Scholar 

  16. Renard, J., Studer, M. & Folk, J. A. Origins of nonlocality near the neutrality point in graphene. Phys. Rev. Lett. 112, 116601 (2014).

    Article  Google Scholar 

  17. Abanin, D. A., Shytov, A. V., Levitov, L. S. & Halperin, B. I. Nonlocal charge transport mediated by spin diffusion in the spin Hall effect regime. Phys. Rev. B 79, 035304 (2009).

    Article  Google Scholar 

  18. Han, W. et al. Tunneling spin injection into single layer graphene. Phys. Rev. Lett. 105, 167202 (2010).

    Article  Google Scholar 

  19. Zhang, Y. et al. Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett. 96, 136806 (2006).

    Article  CAS  Google Scholar 

  20. Checkelsky, J. G., Li, L. & Ong, N. P. Zero-energy state in graphene in a high magnetic field. Phys. Rev. Lett. 100, 206801 (2008).

    Article  Google Scholar 

  21. Amet, F., Williams, J. R., Watanabe, K., Taniguchi, T. & Goldhaber-Gordon, D. Insulating behavior at the neutrality point in single-layer graphene. Phys. Rev. Lett. 110, 216601 (2013).

    Article  CAS  Google Scholar 

  22. Young, A. F. et al. Spin and valley quantum Hall ferromagnetism in graphene. Nature Phys. 8, 550–556 (2012).

    Article  CAS  Google Scholar 

  23. Alicea, J. & Fisher, M. P. A. Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes. Phys. Rev. B 74, 075422 (2006).

    Article  Google Scholar 

  24. Nomura, K. & MacDonald, A. H. Quantum Hall ferromagnetism in graphene. Phys. Rev. Lett. 96, 256602 (2006).

    Article  Google Scholar 

  25. Young, A. F. et al. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state. Nature 505, 528–532 (2014).

    Article  CAS  Google Scholar 

  26. Roth, A. et al. Nonlocal transport in the quantum spin Hall state. Science 325, 294–297 (2009).

    Article  CAS  Google Scholar 

  27. Wang, Z., Tang, C., Sachs, R., Barlas, Y. & Shi, J. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect. Phys. Rev. Lett. 114, 016603 (2015).

    Article  Google Scholar 

  28. Qiao, Z. et al. Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Phys. Rev. B 82, 161414 (2010).

    Article  Google Scholar 

  29. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin-orbit coupling. Nature Mater. 14, 871–882 (2015).

    Article  CAS  Google Scholar 

  30. Kim, S. J. et al. Ultraclean patterned transfer of single-layer graphene by recyclable pressure sensitive adhesive films. Nano Lett. 15, 3236–3240 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Bucchignano, S. Dawes, B. Ek, J. Gonsalves and E. Galligan at IBM for the technical support. We also thank D. A. Abanin, E. Berg, L. S. Levitov, P. A. Lee, M. E. Flatté and D. Xiao for valuable discussions. P.W. and J.S.M. would like to acknowledge support from National Science Foundation Grant DMR-1207469, Office of Naval Research Grant N00014-13-1-0301, and John Templeton Foundation Grant No. 39944. J.H. and S.L. would like to acknowledge support from the NSF MRSEC programme through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids (DMR-1420634). D.H. would like to acknowledge support from National Science Foundation Grant ECCS-1402378.

Author information

Authors and Affiliations

Authors

Contributions

C.-T.C. conceived of the project. S.L., W.C. and J.H. fabricated the CVD graphene devices. P.W. and J.S.M. synthesized the graphene/EuS heterostructures. P.W., F.K., Y.Z., D.H., J.S.M. and C.-T.C. characterized the EuS properties. F.L., S.L., L.P., W.C., D.C. and C.-T.C. carried out the transport experiments. P.W. and C.-T.C. analysed the data and drafted the manuscript. All authors commented on the manuscript.

Corresponding authors

Correspondence to Peng Wei or Ching-Tzu Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1671 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, P., Lee, S., Lemaitre, F. et al. Strong interfacial exchange field in the graphene/EuS heterostructure. Nature Mater 15, 711–716 (2016). https://doi.org/10.1038/nmat4603

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4603

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing