Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interfacial electronic effects control the reaction selectivity of platinum catalysts

Abstract

Tuning the electronic structure of heterogeneous metal catalysts has emerged as an effective strategy to optimize their catalytic activities. By preparing ethylenediamine-coated ultrathin platinum nanowires as a model catalyst, here we demonstrate an interfacial electronic effect induced by simple organic modifications to control the selectivity of metal nanocatalysts during catalytic hydrogenation. This we apply to produce thermodynamically unfavourable but industrially important compounds, with ultrathin platinum nanowires exhibiting an unexpectedly high selectivity for the production of N-hydroxylanilines, through the partial hydrogenation of nitroaromatics. Mechanistic studies reveal that the electron donation from ethylenediamine makes the surface of platinum nanowires highly electron rich. During catalysis, such an interfacial electronic effect makes the catalytic surface favour the adsorption of electron-deficient reactants over electron-rich substrates (that is, N-hydroxylanilines), thus preventing full hydrogenation. More importantly, this interfacial electronic effect, achieved through simple organic modifications, may now be used for the optimization of commercial platinum catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure analysis of the ultrathin Pt NWs.
Figure 2: Catalytic performance of EDA-Pt NWs.
Figure 3: The surface electronic effect induced by EDA.
Figure 4: Mechanism of catalytic selectivity of EDA-Pt NWs.

Similar content being viewed by others

References

  1. Sheldon, R. A. & Van Bekkum, H. Fine Chemicals Through Heterogeneous Catalysis (John Wiley, 2008).

    Google Scholar 

  2. Noyori, R. Synthesizing our future. Nature Chem. 1, 5–6 (2009).

    Article  CAS  Google Scholar 

  3. Somorjai, G. A. & Rioux, R. M. High technology catalysts towards 100% selectivity fabrication, characterization and reaction studies. Catal. Today 100, 201–215 (2005).

    Article  CAS  Google Scholar 

  4. Van Leeuwen, P. W. Homogeneous Catalysis: Understanding the Art (Springer Science Business Media, 2006).

    Google Scholar 

  5. Schmid, A. et al. Industrial biocatalysis today and tomorrow. Nature 409, 258–268 (2001).

    Article  CAS  Google Scholar 

  6. Rod, T. H. & Norskov, J. K. The surface science of enzymes. Surf. Sci. 500, 678–698 (2002).

    Article  CAS  Google Scholar 

  7. Wang, D.-H., Engle, K. M., Shi, B.-F. & Yu, J.-Q. Ligand-enabled reactivity and selectivity in a synthetically versatile aryl C–H olefination. Science 327, 315–319 (2010).

    Article  CAS  Google Scholar 

  8. Swiegers, G. F. Mechanical Catalysis: Methods of Enzymatic, Homogeneous, and Heterogeneous Catalysis (John Wiley, 2008).

    Book  Google Scholar 

  9. Bhaduri, S. & Mukesh, D. Homogeneous Catalysis: Mechanisms and Industrial Applications (Wiley, 2000).

    Book  Google Scholar 

  10. Marshall, S. T. et al. Controlled selectivity for palladium catalysts using self-assembled monolayers. Nature Mater. 9, 853–858 (2010).

    Article  CAS  Google Scholar 

  11. Astruc, D., Lu, F. & Aranzaes, J. R. Nanoparticles as recyclable catalysts. The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 44, 7852–7872 (2005).

    Article  CAS  Google Scholar 

  12. Wu, B. H. & Zheng, N. F. Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8, 168–197 (2013).

    Article  Google Scholar 

  13. Medlin, J. W. Controlling selectivity in heterogeneous catalysis with organic modifiers. Acc. Chem. Res. 47, 1438–1445 (2013).

    Google Scholar 

  14. Jones, S., Qu, J., Tedsree, K., Gong, X.-Q. & Tsang, S. C. E. Prominent electronic and geometric modifications of palladium nanoparticles by polymer stabilizers for hydrogen production under ambient conditions. Angew. Chem. Int. Ed. 51, 11275–11278 (2012).

    Article  CAS  Google Scholar 

  15. Luksirikul, P., Tedsree, K., Moloney, M. G., Green, M. L. H. & Tsang, S. C. E. Electron promotion by surface functional groups of single wall carbon nanotubes to overlying metal particles in a fuel-cell catalyst. Angew. Chem. Int. Ed. 51, 6998–7001 (2012).

    Article  CAS  Google Scholar 

  16. Stamenkovic, V. et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 45, 2897–2901 (2006).

    Article  CAS  Google Scholar 

  17. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  CAS  Google Scholar 

  18. Zhang, J., Sasaki, K., Sutter, E. & Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315, 220–222 (2007).

    Article  CAS  Google Scholar 

  19. Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    Article  CAS  Google Scholar 

  20. Cui, C. et al. Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 12, 5885–5889 (2012).

    Article  CAS  Google Scholar 

  21. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nature Chem. 2, 454–460 (2010).

    Article  CAS  Google Scholar 

  22. Kim, D., Resasco, J., Yu, Y., Asiri, A. M. & Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nature Commun. 5, 4948 (2014).

    Article  CAS  Google Scholar 

  23. Tedsree, K. et al. Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core-shell nanocatalyst. Nature Nanotech. 6, 302–307 (2011).

    Article  CAS  Google Scholar 

  24. Enache, D. I. et al. Solvent-free oxidation of primary alcohols to aldehydes using Au–Pd/TiO2 catalysts. Science 311, 362–365 (2006).

    Article  CAS  Google Scholar 

  25. Zhang, H., Watanabe, T., Okumura, M., Haruta, M. & Toshima, N. Catalytically highly active top gold atom on palladium nanocluster. Nature Mater. 11, 49–52 (2012).

    Article  Google Scholar 

  26. Chan, C. W. A. et al. Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation. Nature Commun. 5, 5787 (2014).

    Article  CAS  Google Scholar 

  27. Vayssilov, G. N. et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nature Mater. 10, 310–315 (2011).

    Article  CAS  Google Scholar 

  28. Campbell, C. T. Catalyst-support interactions: electronic perturbations. Nature Chem. 4, 597–598 (2012).

    Article  CAS  Google Scholar 

  29. Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 299, 1688–1691 (2003).

    Article  CAS  Google Scholar 

  30. Ross, J. R. Heterogeneous Catalysis: Fundamentals and Applications (Elsevier, 2012).

    Google Scholar 

  31. Blaser, H.-U. A golden boost to an old reaction. Science 313, 312–313 (2006).

    Article  CAS  Google Scholar 

  32. Corma, A. & Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313, 332–334 (2006).

    Article  CAS  Google Scholar 

  33. Solomina, T. A. et al. Prospects of catalytic reduction of aromatic nitro compounds by hydrogen. Int. J. Hydrog. Energy 20, 159–161 (1995).

    Article  CAS  Google Scholar 

  34. Bordwell, F. G. & Liu, W.-Z. Equilibrium acidities and homolytic bond dissociation energies of N–H and/or O–H bonds in N-phenylhydroxylamine and its derivatives. J. Am. Chem. Soc. 118, 8777–8781 (1996).

    Article  CAS  Google Scholar 

  35. Evans, D. A., Song, H.-J. & Fandrick, K. R. Enantioselective nitrone cycloadditions of alpha, beta-unsaturated 2-acyl imidazoles catalyzed by bis(oxazolinyl)pyridine-cerium(IV) triflate complexes. Org. Lett. 8, 3351–3354 (2006).

    Article  CAS  Google Scholar 

  36. Sun, Z. Y. et al. The solvent-free selective hydrogenation of nitrobenzene to aniline: an unexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes. Green Chem. 12, 1007–1011 (2010).

    Article  CAS  Google Scholar 

  37. Corma, A., Serna, P., Concepcion, P. & Calvino, J. J. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc. 130, 8748–8753 (2008).

    Article  CAS  Google Scholar 

  38. Möbus, K. et al. Hydrogenation of aromatic nitrogroups with precious metal powder catalysts: influence of modifier on selectivity and activity. Top. Catal. 53, 1126–1131 (2010).

    Article  Google Scholar 

  39. Takasaki, M. et al. Chemoselective hydrogenation of nitroarenes with carbon nanofiber-supported platinum and palladium nanoparticles. Org. Lett. 10, 1601–1604 (2008).

    Article  CAS  Google Scholar 

  40. Linstrom, P. J. & Mallard, W. G. (eds) NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, 19 December 2015); http://webbook.nist.gov

    Google Scholar 

  41. Oxley, P. W., Adger, B. M., Sasse, M. J. & Forth, M. A. N-acetyl-N-phenylhydroxylamine via catalytic transfer hydrogenation of nitrobenzene using hydrazine and rhodium on carbon. Org. Synth. http://doi.org/bmp73h (2003).

  42. Takenaka, Y., Kiyosu, T., Choi, J.-C., Sakakura, T. & Yasuda, H. Selective synthesis of N-aryl hydroxylamines by the hydrogenation of nitroaromatics using supported platinum catalysts. Green Chem. 11, 1385–1390 (2009).

    Article  CAS  Google Scholar 

  43. Kinomoto, Y., Watanabe, S., Takahashi, M. & Ito, M. Infrared spectra of CO adsorbed on Pt(100), Pt(111), and Pt(110) electrode surfaces. Surf. Sci. 242, 538–543 (1991).

    Article  CAS  Google Scholar 

  44. Owen, J. The coordination chemistry of nanocrystal surfaces. Science 347, 615–616 (2015).

    Article  CAS  Google Scholar 

  45. CrysAlis Pro Version 1.171.35.19 (Agilent Technologies, 2011).

  46. Sheldrick, G. M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. C 71, 3–8 (2015).

    Article  Google Scholar 

  47. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  48. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  50. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  51. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  52. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  53. Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    Article  CAS  Google Scholar 

  54. Frisch, M. J. et al. Gaussian 09, Revision D.01 (Gaussian, 2009).

    Google Scholar 

  55. Galano, A. & Cruz-Torresb, A. OH radical reactions with phenylalanine in free and peptide forms. Org. Biomol. Chem. 6, 732–738 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the MOST of China (2015CB932303), the NSFC (21420102001, 21131005, 21390390, 21333008, 21373167, 21133004), IRT_14R31, and the NFFTBS (J1210014) for the financial support. We thank Y. P. Zheng for help with XPS measurements, S. Q. Wei for preliminary XAS tests, Y. Ding and Z. L. Wang for preliminary HRTEM measurements. We also thank L. S. Zheng, Z. Q. Tian, L. W. Ye., M. S. Chen, B. Ren, J. F. Li, P. Zhang, Y. Zhao, J. Yang and P. N. Duchesne for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

N.Z. conceived the research project. G.C., C.X., X.H., Z.Z. and B.W. designed and synthesized the nanomaterials and carried out the catalysis experiments. G.F. carried out the model construction and DFT calculations. G.L. and Z.T. performed the TPD-MS experiments. J.Y. and Z.Z. carried out the in situ FTIR spectroscopy experiments. L.G. performed the HRTEM measurements. H.Y. performed the single-crystal analysis. All the authors contributed to the data analysis and drafted the manuscript.

Corresponding authors

Correspondence to Gang Fu or Nanfeng Zheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4037 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Xu, C., Huang, X. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nature Mater 15, 564–569 (2016). https://doi.org/10.1038/nmat4555

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4555

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing