Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optimal wrapping of liquid droplets with ultrathin sheets

Abstract

Elastic sheets offer a path to encapsulating a droplet of one fluid in another that is different from that of traditional molecular or particulate surfactants1. In wrappings of fluids by sheets of moderate thickness with petals designed to curl into closed shapes2,3, capillarity balances bending forces. Here, we show that, by using much thinner sheets, the constraints of this balance can be lifted to access a regime of high sheet bendability that brings three major advantages: ultrathin sheets automatically achieve optimally efficient shapes that maximize the enclosed volume of liquid for a fixed area of sheet; interfacial energies and mechanical properties of the sheet are irrelevant within this regime, thus allowing for further functionality; and complete coverage of the fluid can be achieved without special sheet designs. We propose and validate a general geometric model that captures the entire range of this new class of wrapped and partially wrapped shapes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Side and top views of a circular polystyrene (PS) sheet wrapping a water drop immersed in silicone oil.
Figure 2: Axisymmetry breaking probed by side-view profiles.
Figure 3: Theoretical wrapping shapes and their efficiency.
Figure 4: Polygonal partial wrapping by petals and folds.

Similar content being viewed by others

References

  1. Binks, B. P. Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci. 7, 21–41 (2002).

    Article  CAS  Google Scholar 

  2. Py, C. et al. Capillary origami: Spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev. Lett. 98, 156103 (2007).

    Article  Google Scholar 

  3. Reis, P. M., Hure, J., Jung, S., Bush, J. W. M. & Clanet, C. Grabbing water. Soft Matter 6, 5705–5708 (2010).

    Article  CAS  Google Scholar 

  4. Gao, L. & McCarthy, T. J. Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization. Langmuir 24, 9183–9188 (2008).

    Article  CAS  Google Scholar 

  5. Guo, X. et al. Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications. Proc. Natl Acad. Sci. USA 106, 20149–20154 (2009).

    Article  CAS  Google Scholar 

  6. Pineirua, M., Bico, J. & Roman, B. Capillary origami controlled by an electric field. Soft Matter 6, 4491–4496 (2010).

    Article  CAS  Google Scholar 

  7. Chen, L., Wang, X., Wen, W. & Li, Z. Critical droplet volume for spontaneous capillary wrapping. Appl. Phys. Lett. 97, 124103 (2010).

    Article  Google Scholar 

  8. Antkowiak, A., Audoly, B., Josserand, C., Neukirch, S. & Rivetti, M. Instant fabrication and selection of folded structures using drop impact. Proc. Natl Acad. Sci. USA 108, 10400–10404 (2011).

    Article  CAS  Google Scholar 

  9. Jamin, T., Py, C. & Falcon, E. Instability of the origami of a ferrofluid drop in a magnetic field. Phys. Rev. Lett. 107, 204503 (2011).

    Article  Google Scholar 

  10. King, H., Schroll, R. D., Davidovitch, B. & Menon, N. Elastic sheet on a liquid drop reveals wrinkling and crumpling as distinct symmetry-breaking instabilities. Proc. Natl Acad. Sci. USA 109, 9716–9720 (2012).

    Article  CAS  Google Scholar 

  11. Huang, J. et al. Capillary wrinkling of floating thin polymer films. Science 317, 650–653 (2007).

    Article  CAS  Google Scholar 

  12. Schroll, R. D. et al. Capillary deformations of bendable films. Phys. Rev. Lett. 111, 014301 (2013).

    Article  CAS  Google Scholar 

  13. Chopin, J., Démery, V. & Davidovitch, B. Roadmap to the morphological instabilities of a stretched twisted ribbon. J. Elast. 119, 137–189 (2015).

    Article  Google Scholar 

  14. Vella, D., Huang, J., Menon, N., Russell, T. P. & Davidovitch, B. Indentation of ultrathin elastic films and the emergence of asymptotic isometry. Phys. Rev. Lett. 114, 014301 (2015).

    Article  Google Scholar 

  15. Pocivavsek, L. et al. Stress and fold localization in thin elastic membranes. Science 320, 912–916 (2008).

    Article  CAS  Google Scholar 

  16. Holmes, D. P. & Crosby, A. J. Draping films: A wrinkle to fold transition. Phys. Rev. Lett. 105, 038303 (2010).

    Article  Google Scholar 

  17. Diamant, H. & Witten, T. A. Compression induced folding of a sheet: An integrable system. Phys. Rev. Lett. 107, 164302 (2011).

    Article  Google Scholar 

  18. Witten, T. A. Stress focusing in elastic sheets. Rev. Mod. Phys. 79, 643–675 (2007).

    Article  Google Scholar 

  19. Aharoni, H. & Sharon, E. Direct observation of the temporal and spatial dynamics during crumpling. Nature Mater. 9, 993–997 (2010).

    Article  CAS  Google Scholar 

  20. Pak, I. & Schlenker, J.-M. Profiles of inflated surfaces. J. Nonlin. Math. Phys. 17, 145–157 (2010).

    Article  Google Scholar 

  21. Davidovitch, B., Schroll, R. D., Vella, D., Adda-Bedia, M. & Cerda, E. A. Prototypical model for tensional wrinkling in thin sheets. Proc. Natl Acad. Sci. USA 108, 18227–18232 (2011).

    Article  CAS  Google Scholar 

  22. Taylor, G. I. On the shapes of parachutes (paper written for the Advisory Committee for Aeronautics, 1919) in The Scientific Papers of Sir Geoffrey Ingram Taylor Vol. 3 (ed. Batchelor, G. K.) 26–37 (Cambridge Univ. Press, 1963).

    Google Scholar 

  23. Paulsen, W. H. What is the shape of a mylar balloon? Am. Math. Mon. 101, 953–958 (1994).

    Article  Google Scholar 

  24. Pak, I. Inflating the cube without stretching. Am. Math. Mon. 115, 443–445 (2008).

    Article  Google Scholar 

  25. Brakke, K. A. The surface evolver. Exp. Math. 1, 141–165 (1992).

    Article  Google Scholar 

  26. Subramaniam, A. B., Abkarian, M., Mahadevan, L. & Stone, H. A. Colloid science: Non-spherical bubbles. Nature 438, 930–930 (2005).

    Article  Google Scholar 

  27. Zoueshtiagh, F., Baudoin, M. & Guerrin, D. Capillary tube wetting induced by particles: Towards armoured bubbles tailoring. Soft Matter 10, 9403–9412 (2014).

    Article  CAS  Google Scholar 

  28. Cui, M., Emrick, T. & Russell, T. P. Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles. Science 342, 460–463 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Juszkiewicz for early contributions to this work and O. Agam for helpful discussions. Funding from the W. M. Keck Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to designing the research and writing the manuscript; J.D.P. and V.D. performed the research; J.D.P. conducted the experiments; J.D.P., T.P.R. and N.M. analysed the experimental data, V.D., C.D.S. and B.D. conducted the analytic and numerical computations.

Corresponding authors

Correspondence to Joseph D. Paulsen or Vincent Démery.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 408 kb)

Supplementary Information

Supplementary Movie 1 (MOV 9636 kb)

Supplementary Information

Supplementary Movie 2 (MOV 12716 kb)

Supplementary Information

Supplementary Movie 3 (MOV 3323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulsen, J., Démery, V., Santangelo, C. et al. Optimal wrapping of liquid droplets with ultrathin sheets. Nature Mater 14, 1206–1209 (2015). https://doi.org/10.1038/nmat4397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4397

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing