Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible redox reactions in an epitaxially stabilized SrCoOx oxygen sponge

Abstract

Fast, reversible redox reactions in solids at low temperatures without thermomechanical degradation are a promising strategy for enhancing the overall performance and lifetime of many energy materials and devices. However, the robust nature of the cation’s oxidation state and the high thermodynamic barrier have hindered the realization of fast catalysis and bulk diffusion at low temperatures. Here, we report a significant lowering of the redox temperature by epitaxial stabilization of strontium cobaltites (SrCoOx) grown directly as one of two distinct crystalline phases, either the perovskite SrCoO3−δ or the brownmillerite SrCoO2.5. Importantly, these two phases can be reversibly switched at a remarkably reduced temperature (200–300 °C) in a considerably short time (< 1 min) without destroying the parent framework. The fast, low-temperature redox activity in SrCoO3−δ is attributed to a small Gibbs free-energy difference between two topotatic phases. Our findings thus provide useful information for developing highly sensitive electrochemical sensors and low-temperature cathode materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epitaxial synthesis of two topotatic SrCoOx phases.
Figure 2: Comparison of oxidation states and magnetism.
Figure 3: Magnetic and d.c. transport properties.
Figure 4: Direct probing of reversible redox activity.
Figure 5: Thermodynamic competition.
Figure 6: Gas phase catalysis.

Similar content being viewed by others

References

  1. Peña, M. A. & Fierro, J. L. G. Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981–2017 (2001).

    Article  Google Scholar 

  2. Maier, J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nature Mater. 4, 805–815 (2005).

    Article  CAS  Google Scholar 

  3. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nature Chem. 1, 37–46 (2009).

    Article  Google Scholar 

  4. Ishihara, T. Perovskite Oxide for Solid Oxide Fuel Cells (Springer, 2009).

    Book  Google Scholar 

  5. Shao, Z. & Haile, S. M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004).

    Article  CAS  Google Scholar 

  6. Poeppelmeier, K. R., Leonowicz, M. E. & Longo, J. M. CaMnO2.5 and Ca2MnO3.5: New oxygen-defect perovskite-type oxides. J. Solid State Chem. 44, 89–98 (1982).

    Article  CAS  Google Scholar 

  7. Hayward, M. A. et al. The hydride anion in an extended transition metal oxide array: LaSrCoO3H0.7 . Science 295, 1882–1884 (2002).

    Article  CAS  Google Scholar 

  8. Inoue, S. et al. Anisotropic oxygen diffusion at low temperature in perovskite-structure iron oxides. Nature Chem. 2, 213–217 (2010).

    Article  CAS  Google Scholar 

  9. Long, Y., Kaneko, Y., Ishiwata, S., Taguchi, Y. & Tokura, Y. Synthesis of cubic SrCoO3 single crystal and its anisotropic magnetic and transport properties. J. Phys. Condens. Matter 23, 245601–245606 (2011).

    Article  Google Scholar 

  10. Takeda, T., Watanabe, H. & Yamaguchi, Y. Magnetic structure of SrCoO2.5 . J. Phys. Soc. Jpn 33, 970–972 (1972).

    Article  CAS  Google Scholar 

  11. Bezdicka, P., Wattiaux, A., Grenier, J. C., Pouchard, M. & Hagenmuller, P. Preparation and characterization of fully stoichiometric SrCoO3 by electrochemical oxidation. Z. Anorg. Allg. Chem. 619, 7–12 (1993).

    Article  CAS  Google Scholar 

  12. Le Toquin, R., Paulus, W., Cousson, A., Prestipino, C. & Lamberti, C. Time-resolved in situ studies of oxygen intercalation into SrCoO2.5, performed by neutron diffraction and X-ray absorption spectroscopy. J. Am. Chem. Soc. 128, 13161–13174 (2006).

    Article  CAS  Google Scholar 

  13. Nemudry, A., Rudolf, P. & Schöllhorn, R. Topotactic electrochemical redox reactions of the defect perovskite SrCoO2.5+x . Chem. Mater. 8, 2232–2238 (1996).

    Article  CAS  Google Scholar 

  14. Taguchi, H., Shimada, M. & Koizumi, M. The effect of oxygen vacancy on the magnetic properties in the system SrCoO3−δ (0 &lt; δ &lt; 0.5). J. Solid State Chem. 29, 221–225 (1979).

    Article  CAS  Google Scholar 

  15. Pasierb, P., Komornicki, S. & Rekas, M. Comparison of the chemical diffusion of undoped and Nb-doped SrTiO3 . J. Phys. Chem. Solids 60, 1835–1844 (1999).

    Article  CAS  Google Scholar 

  16. Goodenough, J. B. & Longo, J. M. Landolt Börnstein Vol. III/4a (Springer, 1970).

    Google Scholar 

  17. Mizusaki, J., Yamauchi, S., Fueki, K. & Ishikawa, A. Nonstoichiometry of the perovskite-type oxide La1−xSrxCrO3−δ . Solid State Ion. 12, 119–124 (1984).

    Article  CAS  Google Scholar 

  18. Hayashi, N., Terashima, T. & Takano, M. Oxygen-holes creating different electronic phases in Fe4+-oxides: Successful growth of single crystalline films of SrFeO3 and related perovskites at low oxygen pressure. J. Mater. Chem. 11, 2235–2237 (2001).

    Article  CAS  Google Scholar 

  19. Muñoz, A. et al. Crystallographic and magnetic structure of SrCoO2.5 brownmillerite: Neutron study coupled with band-structure calculations. Phys. Rev. B 78, 054404–054404 (2008).

    Article  Google Scholar 

  20. Stemmer, S., Sane, A., Browning, N. D. & Mazanec, T. J. Characterization of oxygen-deficient SrCoO3−δ by electron energy-loss spectroscopy and Z-contrast imaging. Solid State Ion. 130, 71–80 (2000).

    Article  CAS  Google Scholar 

  21. Sammells, A. F., Cook, R. L., White, J. H., Osborne, J. J. & Macduff, R. C. Rational selection of advanced solid electrolytes for intermediate temperature fuel cells. Solid State Ion. 52, 111–123 (1992).

    Article  CAS  Google Scholar 

  22. Señarı´s-Rodrı´guez, M. A. & Goodenough, J. B. Magnetic and transport properties of the system La1−xSrxCoO3−δ (0 &lt; x≤0.50). J. Solid State Chem. 118, 323–336 (1995).

    Article  Google Scholar 

  23. Wu, J. & Leighton, C. Glassy ferromagnetism and magnetic phase separation in La1−xSrxCoO3 . Phys. Rev. B 67, 174408 (2003).

    Article  Google Scholar 

  24. Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nature Chem. 3, 546–550 (2011).

    Article  CAS  Google Scholar 

  25. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  CAS  Google Scholar 

  26. Moodenbaugh, A. R. et al. Hole-state density of La1−xSrxCoO3−δ (0≤x≤0.5) across the insulator/metal phase boundary. Phys. Rev. B 61, 5666–5671 (2000).

    Article  CAS  Google Scholar 

  27. Karvonen, L. et al. O-K and Co-L XANES study on oxygen intercalation in perovskite SrCoO3−δ . Chem. Mater. 22, 70–76 (2010).

    Article  CAS  Google Scholar 

  28. Xie, C. K. et al. Magnetic phase separation in SrCoOx (2.5≤x≤3). Appl. Phys. Lett. 99, 052503 (2011).

    Article  Google Scholar 

  29. Balamurugan, S. et al. Specific-heat evidence of strong electron correlations and thermoelectric properties of the ferromagnetic perovskite SrCoO3−δ . Phys. Rev. B 74, 172406 (2006).

    Article  Google Scholar 

  30. Ichikawa, N. et al. Reduction and oxidation of SrCoO2.5 thin films at low temperatures. Dalton Trans. 41, 10507–10510 (2012).

    Article  CAS  Google Scholar 

  31. Lee, J. H. & Rabe, K. M. Coupled magnetic-ferroelectric metal-insulator transition in epitaxially strained SrCoO3 from first principles. Phys. Rev. Lett. 107, 067601–067601 (2011).

    Article  Google Scholar 

  32. Potze, R. H., Sawatzky, G. A. & Abbate, M. Possibility for an intermediate spin ground state in the charge transfer material SrCoO3 . Phys. Rev. B 51, 11501–11506 (1995).

    Article  CAS  Google Scholar 

  33. Maignan, A., Pelloquin, D., Martin, C., Hervieu, M. & Raveau, B. A new form of oxygen deficient 1201-cobaltite (Tl0.4Sr0.5Co0.1) Sr2CoO5−δ: Structure, transport and magnetic properties. J. Mater. Chem. 12, 1009–1016 (2002).

    Article  CAS  Google Scholar 

  34. Zeng, P. Y. et al. Efficient stabilization of cubic perovskite SrCoO3−δ by B-site low concentration scandium doping combined with sol-gel synthesis. J. Alloys Compd 455, 465–470 (2008).

    Article  CAS  Google Scholar 

  35. Tsujimoto, Y. et al. Infinite-layer iron oxide with a square-planar coordination. Nature 450, 1062–1065 (2007).

    Article  CAS  Google Scholar 

  36. Saal, J. E. Thermodynamic Modeling of Phase Transformations: Cobalt Oxides PhD thesis, The Pennsylvania State Univ. (2010).

Download references

Acknowledgements

The work was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. The in situ XRD measurement was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. H.O. was supported by MEXT (25246023).

Author information

Authors and Affiliations

Authors

Contributions

H.J. conducted sample synthesis, XRD, d.c. transport and SQUID measurements with help from W.S.C., and H.J. and M.D.B. performed the high-temperature environmental XRD, under the direction of H.N.L. M.F.C. performed STEM measurements. I-C.T. and J.W.F. measured XAS and XMCD, and H.O. worked on thermopower measurements. D.S. performed the thermodynamic modelling. C.M.F. and D.D.F. worked on the catalysis measurement. H.N.L. initiated the research and supervised the work. All authors participated in writing the manuscript.

Corresponding author

Correspondence to Ho Nyung Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 753 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeen, H., Choi, W., Biegalski, M. et al. Reversible redox reactions in an epitaxially stabilized SrCoOx oxygen sponge. Nature Mater 12, 1057–1063 (2013). https://doi.org/10.1038/nmat3736

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing