Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics

Abstract

Photocurrent generation in organic photovoltaics (OPVs) relies on the dissociation of excitons into free electrons and holes at donor/acceptor heterointerfaces. The low dielectric constant of organic semiconductors leads to strong Coulomb interactions between electron–hole pairs that should in principle oppose the generation of free charges. The exact mechanism by which electrons and holes overcome this Coulomb trapping is still unsolved, but increasing evidence points to the critical role of hot charge-transfer (CT) excitons in assisting this process. Here we provide a real-time view of hot CT exciton formation and relaxation using femtosecond nonlinear optical spectroscopies and non-adiabatic mixed quantum mechanics/molecular mechanics simulations in the phthalocyanine–fullerene model OPV system. For initial excitation on phthalocyanine, hot CT excitons are formed in 10−13 s, followed by relaxation to lower energies and shorter electron–hole distances on a 10−12 s timescale. This hot CT exciton cooling process and collapse of charge separation sets the fundamental time limit for competitive charge separation channels that lead to efficient photocurrent generation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TR-SHG pump–probe profiles of CuPc/fullerene interfaces showing indirect and direct formation of interfacial CT excitons.
Figure 2: TR-2PPE spectra of D/A interfaces showing hot CT excitons.
Figure 3: Non-adiabatic QM/MM simulations of charge separation dynamics at H2 Pc/C60 interfaces.
Figure 4: Non-adiabatic QM/MM simulations of charge separation dynamics at H2Pc/C60 interfaces showing hot CT exciton transitions.

Similar content being viewed by others

References

  1. Brédas, J-L., Norton, J. E., Cornil, J. & Coropceanu, V. Molecular understanding of organic solar cells: The challenges. Acc. Chem. Res. 42, 1691–1699 (2009).

    Article  Google Scholar 

  2. Vandewal, K., Tvingstedt, K., Gadisa, A., Inganäs, O. & Manca, J. V. On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nature Mater. 8, 904–909 (2009).

    Article  CAS  Google Scholar 

  3. Zhu, X-Y., Yang, Q. & Muntwiler, M. Charge-transfer excitons at organic semiconductor surfaces and interfaces. Acc. Chem. Res. 42, 1779–1787 (2009).

    Article  CAS  Google Scholar 

  4. Clarke, T. M. & Durrant, J. R. Charge photogeneration in organic solar cells. Chem. Rev. 110, 6736–6767 (2010).

    Article  CAS  Google Scholar 

  5. Morteani, A. C., Sreearunothai, P., Hertz, L. M., Friend, R. H. & Silva, C. Exciton regeneration at polymeric semiconductor heterojunctions. Phys. Rev. Lett. 92, 247402 (2004).

    Article  Google Scholar 

  6. Tvingstedt, K. et al. Electroluminescence from charge transfer states in polymer solar cells. J. Am. Chem. Soc. 131, 11819–11824 (2009).

    Article  CAS  Google Scholar 

  7. Loi, M. A. et al. Charge transfer excitons in bulk heterojunctions of a polyfluorene copolymer and a fullerene derivative. Adv. Funct. Mater. 17, 2111–2116 (2007).

    Article  CAS  Google Scholar 

  8. Vandewal, K. et al. The relation between open-circuit voltage and the onset of photocurrent generation by charge-transfer absorption in polymer: fullerene bulk heterojunction solar cells. Adv. Funct. Mater. 18, 2064–2070 (2008).

    Article  CAS  Google Scholar 

  9. Drori, T. et al. Below-gap excitation of π-conjugated polymer–fullerene blends: Implications for bulk organic heterojunction solar cells. Phys. Rev. Lett. 101, 037401 (2008).

    Article  CAS  Google Scholar 

  10. Ford, T. A., Ohkita, H., Cook, S., Durrant, J. R. & Greenham, N. C. Direct observation of intersystem crossing in charge-pair states in polyfluorene polymer blends. Chem. Phys. Lett. 454, 237–241 (2008).

    Article  CAS  Google Scholar 

  11. Wilke, A. et al. Electric fields induced by energy level pinning at organic heterojunctions. Appl. Phys. Lett. 98, 123304 (2011).

    Article  Google Scholar 

  12. Beljonne, D. et al. Electronic processes at organic-organic interfaces: Insight from modeling and implications for opto-electronic devices. Chem. Mater. 23, 591–609 (2011).

    Article  CAS  Google Scholar 

  13. McMahon, D. P., Cheung, D. L. & Troisi, A. Why holes and electrons separate so well in polymer/fullerene photovoltaic cells. J. Phys. Chem. Lett. 2, 2737–2741 (2011).

    Article  CAS  Google Scholar 

  14. Chen, W. et al. Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells. Nano. Lett. 11, 3707–3713 (2011).

    Article  Google Scholar 

  15. Grancini, G. et al. Transient absorption imaging of P3HT: PCBM photovoltaic blend: Evidence for interfacial charge transfer state. J. Phys. Chem. Lett. 2, 1099–1105 (2011).

    Article  CAS  Google Scholar 

  16. Yost, S. R., Wang, L-P. & Van Voorhis, T. Molecular insight into the energy levels at the organic donor/acceptor interface: A quantum mechanics/molecular mechanics study. J. Phys. Chem. C 115, 14431–14436 (2011).

    Article  CAS  Google Scholar 

  17. Liu, A. et al. Control of electric field strength and orientation at the donor–acceptor interface in organic solar cells. Adv. Mater. 20, 1065–1070 (2008).

    Article  CAS  Google Scholar 

  18. Peumans, P. & Forrest, S. R. Separation of geminate charge-pairs at donor–acceptor interfaces in disordered solids. Chem. Phys. Lett. 398, 27–31 (2004).

    Article  CAS  Google Scholar 

  19. Gregg, B. A. Charged defects in soft semiconductors and their influence on organic photovoltaics. Soft Matter 5, 2985–2989 (2009).

    Article  CAS  Google Scholar 

  20. Gregg, B. A. Entropy of charge separation in organic photovoltaic cells: The benefit of higher dimensionality. J. Phys. Chem. Lett. 2, 3013–3015 (2011).

    Article  CAS  Google Scholar 

  21. Müller, J. G. et al. Ultrafast dynamics of charge carrier photogeneration and geminate recombination in conjugated polymer: Fullerene solar cells. Phys. Rev. B 72, 195208 (2005).

    Article  Google Scholar 

  22. Bakulin, A. A. et al. The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335, 1340–1344 (2012).

    Article  CAS  Google Scholar 

  23. Ohkita, H. et al. Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. J. Am. Chem. Soc. 130, 3030–3042 (2008).

    Article  CAS  Google Scholar 

  24. Schoaee, S. et al. Acceptor energy level control of charge photogeneration in organic donor/acceptor blends. J. Am. Chem. Soc. 132, 12919–12926 (2010).

    Article  Google Scholar 

  25. Lee, J. et al. Charge transfer state versus hot exciton dissociation in polymer–fullerene blended solar cells. J. Am. Chem. Soc. 132, 11878–11880 (2010).

    Article  CAS  Google Scholar 

  26. Van der Hofstad, T. G. J., Di Nuzzo, D., van den Berg, M., Janssen, R. A. J. & Meskers, S. C. J. Influence of photon excess energy on charge carrier dynamics in a polymer–fullerene solar cell. Adv. Energy Mater. 2, 1095–1099 (2012).

    Article  CAS  Google Scholar 

  27. Herrmann, D. et al. Role of structural order and excess energy on ultrafast free charge generation in hybrid polythiophene/Si photovoltaics probed in realtime by near-infrared broadband transient absorption. J. Am. Chem. Soc. 133, 18220–18233 (2011).

    Article  CAS  Google Scholar 

  28. Tisdale, W. A. et al. Hot electron transfer from semiconductor nanocrystals. Science 328, 1543–1547 (2010).

    Article  CAS  Google Scholar 

  29. Chan, W-L. et al. Observing the multi-exciton state in singlet fission and ensuing ultrafast multi-electron transfer. Science 334, 1541–1545 (2011).

    Article  CAS  Google Scholar 

  30. Lobaugh, J. & Rossky, P. J. Computer simulations of the excited state dynamics of betaine-30 in acetonitrile. J. Phys. Chem. A 103, 9432–9447 (1999).

    Article  CAS  Google Scholar 

  31. Sterpone, F., Bedard-Hearn, M. J. & Rossky, P. J. Nonadiabatic simulations of exciton dissociation in poly-p-phenylenevinylene oligomers. J. Phys. Chem. A 114, 7661–7670 (2010).

    Article  Google Scholar 

  32. Xue, J., Rand, B. P., Uchida, S. & Forrest, S. R. A hybrid planar-mixed molecular heterojunction photovoltaics cell. Adv. Mater. 17, 66–71 (2005).

    Article  CAS  Google Scholar 

  33. Akaike, K., Kanai, K., Ouchi, Y. & Seki, K. Impact of ground-state charge transfer and polarization energy change on energy band offsets at donor/acceptor interface in organic photovoltaics. Adv. Funct. Mater. 20, 715–721 (2010).

    Article  CAS  Google Scholar 

  34. Tang, J. X., Zhou, Y. C., Liu, Z. T., Lee, C. S. & Lee, S. T. Interfacial electronic structures in an organic double-heterostructure photovoltaic cell. Appl. Phys. Lett. 93, 043512 (2008).

    Article  Google Scholar 

  35. Kaake, L, Jailaubekov, A., Williams, K. & Zhu, X-Y. Probing ultrafast charge separation at organic donor/acceptor interfaces by a femtosecond electric field meter. Appl. Phys. Lett. 99, 083307 (2011).

    Article  Google Scholar 

  36. Scholes, G. A. Insights into excitons confined to nanoscale systems: electron–hole interaction, binding energy, and photodissociation. ACS Nano 2, 523–537 (2008).

    Article  CAS  Google Scholar 

  37. Dutton, G. J., Jin, W., Reutt-Robey, J. E. & Robey, S. W. Ultrafast charge-transfer processes at an oriented phthalocyanine/C60 interface. Phys. Rev. B 82, 073407 (2010).

    Article  Google Scholar 

  38. Warshel, A. & Karplus, M. Calculation of ground and excited-state potential surfaces of conjugated molecules. 1. Formulation and parameterization. J. Am. Chem. Soc. 94, 5612–5625 (1972).

    Article  CAS  Google Scholar 

  39. Tully, J. C. Molecular-dynamics with electronic-transitions. J. Chem. Phys. 93, 1061–1071 (1990).

    Article  CAS  Google Scholar 

  40. Davidson, A. T. The effect of the metal atom on the absorption spectra of phthalocyanine films. J. Chem. Phys. 88, 168 (1982).

    Article  Google Scholar 

  41. Kasha, M. J. Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radiat. Res. 20, 55–71 (1963).

    Article  CAS  Google Scholar 

  42. Onsager, L. Initial recombination of ion pairs. Phys. Rev. 54, 554–557 (1938).

    Article  CAS  Google Scholar 

  43. Xi, X. et al. A comparative study on the performances of small molecule organic solar cells based on CuPc/C60 and CuPc/C70 . Sol. Energy Mater. Sol. Cells 94, 2435–2441 (2010).

    Article  CAS  Google Scholar 

  44. Sai, N. et al. Understanding the interfacial dipole field at the copper phthalocyanine (CuPc)/C60 interface: Theory and experiment. J. Phys. Chem. Lett. 3, 273–2177 (2012).

    Article  Google Scholar 

  45. Lobaugh, J. & Rossky, P. J. Solvent and intramolecular effects on the absorption spectrum of betaine-30. J. Phys. Chem. A 104, 899–907 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The results reported here were based on work supported as part of the Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001091. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. Computational resources were provided by TACC and NERSC.

Author information

Authors and Affiliations

Authors

Contributions

X-Y.Z. supervised the experiments. P.J.R. supervised QM/MM simulations; A.E.J. and L.G.K. carried out the TR-SHG experiments; J.R.T. and W-L.C. carried out the TR-2PPE experiments; A.P.W. carried out the QM/MM simulations; R.G. assisted in sample preparation; K.J.W. helped with experimental set-up; N.S. and K.L. carried out time-dependent density functional theory calculations. X-Y.Z., A.E.J. and A.P.W. wrote the manuscript.

Corresponding authors

Correspondence to Askat E. Jailaubekov, Adam P. Willard, Loren G. Kaake, Peter J. Rossky or X-Y. Zhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4509 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jailaubekov, A., Willard, A., Tritsch, J. et al. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Nature Mater 12, 66–73 (2013). https://doi.org/10.1038/nmat3500

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3500

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing