Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlling the Curie temperature in (Ga,Mn)As through location of the Fermi level within the impurity band

Abstract

The ferromagnetic semiconductor (Ga,Mn)As has emerged as the most studied material for prototype applications in semiconductor spintronics. Because ferromagnetism in (Ga,Mn)As is hole-mediated, the nature of the hole states has direct and crucial bearing on its Curie temperature TC. It is vigorously debated, however, whether holes in (Ga,Mn)As reside in the valence band or in an impurity band. Here we combine results of channelling experiments, which measure the concentrations both of Mn ions and of holes relevant to the ferromagnetic order, with magnetization, transport, and magneto-optical data to address this issue. Taken together, these measurements provide strong evidence that it is the location of the Fermi level within the impurity band that determines TC through determining the degree of hole localization. This finding differs drastically from the often accepted view that TC is controlled by valence band holes, thus opening new avenues for achieving higher values of TC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison between experimental data and theoretical calculations based on the valence band model of Jungwirth et al.33.
Figure 2: Effect of annealing on transport properties of (Ga,Mn)As samples.
Figure 3: Schematic representation of the origin of MCD in (Ga,Mn)As.
Figure 4: MCD spectra.
Figure 5: Comparison between MCD spectra for samples F and F*.

Similar content being viewed by others

References

  1. Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nature Mater. 9, 965–974 (2010).

    Article  CAS  Google Scholar 

  2. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).

    Article  CAS  Google Scholar 

  3. Jungwirth, T. et al. Character of states near the Fermi level in (Ga,Mn)As: Impurity to valence band crossover. Phys. Rev. B 76, 125206 (2007).

    Article  Google Scholar 

  4. Sawicki, M. Magnetic properties of (Ga,Mn)As. J. Magn. Magn. Mater. 300, 1–6 (2006).

    Article  CAS  Google Scholar 

  5. Neumaier, D. et al. All-electrical measurements of the density of states in (Ga,Mn)As. Phys. Rev. Lett. 103, 087203 (2009).

    Article  CAS  Google Scholar 

  6. Sawicki, M. et al. Experimental probing of the interplay between ferromagnetism and localization in (Ga,Mn)As. Nature Phys. 6, 22–25 (2010).

    Article  CAS  Google Scholar 

  7. Richardella, A. et al. Visualizing critical correlations near the metal–insulator transition in Ga1−xMnxAs. Science 327, 665–669 (2010).

    Article  CAS  Google Scholar 

  8. Boukari, H. et al. Light and electric field control of ferromagnetism in magnetic quantum structures. Phys. Rev. Lett. 88, 207204 (2002).

    Article  CAS  Google Scholar 

  9. Jungwirth, T., König, J., Sinova, J., Kučera, J. & MacDonald, A. H. Curie temperature trends in (III, Mn)V ferromagnetic semiconductors. Phys. Rev. B 66, 012402 (2002).

    Article  Google Scholar 

  10. Nishitani, Y. et al. Curie temperature versus hole concentration in field-effect structures of Ga1−xMnxAs. Phys. Rev. B 81, 045208 (2010).

    Article  Google Scholar 

  11. Wang, K. Y. et al. Influence of the Mn interstitial on the magnetic and transport properties of (Ga,Mn)As. J. Appl. Phys. 95, 6512–6514 (2004).

    Article  CAS  Google Scholar 

  12. Ku, K. C. et al. Highly enhanced Curie temperature in low-temperature annealed [Ga,Mn]As epilayers. Appl. Phys. Lett. 82, 2302–2304 (2003).

    Article  CAS  Google Scholar 

  13. Sato, K., Dederichs, P. H. & Katayama-Yoshida, H. Curie temperatures of III–V diluted magnetic semiconductors calculated from first principles. Europhys. Lett. 61, 403–408 (2003).

    Article  CAS  Google Scholar 

  14. Berciu, M. & Bhatt, R. N. Effects of disorder on ferromagnetism in diluted magnetic semiconductors. Phys. Rev. Lett. 87, 107203 (2001).

    Article  CAS  Google Scholar 

  15. Mahadevan, P. & Zunger, A. Trends in ferromagnetism, hole localization, and acceptor level depth for Mn substitution in GaN, GaP, GaAs, GaSb. Appl. Phys. Lett. 85, 2860–2862 (2004).

    Article  CAS  Google Scholar 

  16. Erwin, S. C. & Petukhov, A. G. Self-compensation in Manganese-doped ferromagnetic semiconductors. Phys. Rev. Lett. 89, 227201 (2002).

    Article  Google Scholar 

  17. Alberi, K. et al. Formation of Mn-derived impurity band in III-Mn-V alloys by valence band anticrossing. Phys. Rev. B 78, 075201 (2008).

    Article  Google Scholar 

  18. Mayer, M. A. et al. Electronic structure of Ga1−xMnxAs analyzed according to hole-concentration-dependent measurements. Phys. Rev. B 81, 045205 (2010).

    Article  Google Scholar 

  19. Burch, K., Awschalom, D. & Basov, D. Optical properties of III-Mn-V ferromagnetic semiconductors. J. Magn. Magn. Mater. 320, 3207–3228 (2008).

    Article  CAS  Google Scholar 

  20. Burch, K. S. et al. Impurity band conduction in a high temperature ferromagnetic semiconductor. Phys. Rev. Lett. 97, 087208 (2006).

    Article  CAS  Google Scholar 

  21. Rokhinson, L. P. et al. Weal localization in Ga1−xMnxAs: Evidence of impurity band transport. Phys. Rev. B 76, 161201 (2007).

    Article  Google Scholar 

  22. Ohya, S., Muneta, I., Hai, P. N. & Tanaka, M. Valence-band structure of the ferromagnetic semiconductor (Ga,Mn)As studied by spin-dependent resonant tunneling spectroscopy. Phys. Rev. Lett. 104, 167204 (2010).

    Article  Google Scholar 

  23. Sheu, B. L. et al. Onset of ferromagnetism in low-doped Ga1−xMnxAs. Phys. Rev. Lett. 99, 227205 (2007).

    Article  CAS  Google Scholar 

  24. Tang, J-M. & Flatte, M. E. Magnetic circular dichroism from the impurity band in III–V diluted magnetic semiconductors. Phys. Rev. Lett. 101, 157203 (2008).

    Article  Google Scholar 

  25. Ohya, S., Takata, K. & Tanaka, M. Nearly non-magnetic valence band of the ferromagnetic semiconductor (Ga,Mn)As. Nature Phys. 7, 342–347 (2011).

    Article  CAS  Google Scholar 

  26. Chapler, B. C. et al. Infrared probe of the insulator-to-metal transition in Ga1−xMnxAs and Ga1−xBexAs. Phys. Rev. B 84, 081203 (2011).

    Article  Google Scholar 

  27. Yu, K. M. et al. Effect of the location of Mn sites in ferromagnetic Ga1−xMnxAs on its Curie temperature. Phys. Rev. B 65, 201303 (2002).

    Article  Google Scholar 

  28. Blinowski, J. & Kacman, P. Spin interactions of interstitial Mn ions in ferromagnetic (Ga,Mn)As. Phys. Rev. B 67, 121204 (2003).

    Article  Google Scholar 

  29. Mašek, C. J. & Máca, F. Interstitial Mn in (Ga,Mn)As: Binding energy and exchange coupling. Phys. Rev. B 69, 165212 (2004).

    Article  Google Scholar 

  30. Edmonds, K. W. et al. Mn Interstitial Diffusion in (Ga,Mn)As. Phys. Rev. Lett. 92, 037201 (2004).

    Article  CAS  Google Scholar 

  31. Bouzerar, G., Ziman, T. & Kudrnovský, J. Compensation, interstitial defects, and ferromagnetism in diluted ferromagnetic semiconductors. Phys. Rev. B 72, 125207 (2005).

    Article  Google Scholar 

  32. Takeda, Y. et al. Nature of magnetic coupling between Mn ions in As-Grown Ga1−xMnxAs studied by X-Ray magnetic circular dichroism. Phys. Rev. Lett. 100, 247202 (2008).

    Article  CAS  Google Scholar 

  33. Jungwirth, T. et al. Prospects for high temperature ferromagnetism in (Ga,Mn)As semiconductors. Phys. Rev. B 72, 165204 (2005).

    Article  Google Scholar 

  34. Yu, K. M. et al. Curie temperature limit in ferromagnetic Ga1−xMnxAs. Phys. Rev. B 68, 041308 (2003).

    Article  Google Scholar 

  35. Wojtowicz, T., Furdyna, J. K., Liu, X., Yu, K. M. & Walukiewicz, W. Electronic effects determining the formation of ferromagnetic III1−xMnxV alloys during epitaxial growth. Physica E 25, 171–180 (2004).

    Article  CAS  Google Scholar 

  36. MacDonald, A. H., Schiffer, P. & Samarth, N. Ferromagnetic semiconductors: Moving beyond (Ga,Mn)As. Nature Mater. 4, 195–202 (2005).

    Article  CAS  Google Scholar 

  37. Yu, K. M. et al. in Fermi Level Effects on Mn Incorporation in III-Mn-V Ferromagnetic Semiconductors Vol. 82 (eds Dietl, T., Awchalom, D. D., Kamińska, M. & Ohno, H.) (Spintronics, Semiconductors and Semimetals, Elsevier, 2008).

    Book  Google Scholar 

  38. Sadowski, J. et al. Structural and magnetic properties of (Ga,Mn)As layers with high Mn-content grown by migration-enhanced epitaxy on GaAs(100) substrates. Appl. Phys. Lett. 78, 3271–3273 (2001).

    Article  CAS  Google Scholar 

  39. Wolos, A. et al. Properties of arsenic antisite defects in Ga1−xMnxAs. J. Appl. Phys. 96, 530–533 (2004).

    Article  CAS  Google Scholar 

  40. Cho, Y. J., Yu, K. M., Liu, X., Walukiewicz, W. & Furdyna, J. K. Effects of donor doping on Ga1−xMnxAs. Appl. Phys. Lett. 93, 262505 (2008).

    Article  Google Scholar 

  41. Berciu, M. et al. Origin of magnetic circular dichroism in (Ga,Mn)As: Giant Zeeman splitting vs. spin dependent density of states. Phys. Rev. Lett. 102, 247202 (2009).

    Article  CAS  Google Scholar 

  42. Moca, C. P., Zarand, G. & Berciu, M. Theory of optical conductivity for dilute Ga1−xMnxAs. Phys. Rev. B 80, 165202 (2009).

    Article  Google Scholar 

  43. Kirby, B. J. et al. Annealing-dependent magnetic depth profile in Ga1−xMnxAs. Phys. Rev. B 69, 081307 (2004).

    Article  Google Scholar 

  44. Liu, X., Sasaki, Y. & Furdyna, J. K. Ferromagnetic resonance in Ga1−xMnxAs. Phys. Rev. B 67, 205204 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

K.T. thanks Y-Y. Zhou for her help with the MCD set-up and sample preparation. This work was supported by the National Science Foundation Grant DMR 10-05851; by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Institute for Advanced Research (CIFAR) and by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE — AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

M.D. and M.B. conceived the project and wrote the manuscript. K.T. carried out the MCD, transport and magnetization experiments with guidance from X.L., M.D. and J.K.F. X.L. fabricated the samples and contributed to the manuscript. K.M.Y. and W.W. are responsible for the channelling experiments. The project was supervised by M.D. and J.K.F. All authors have reviewed, discussed and approved the results and conclusions of this article.

Corresponding author

Correspondence to M. Dobrowolska.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 341 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrowolska, M., Tivakornsasithorn, K., Liu, X. et al. Controlling the Curie temperature in (Ga,Mn)As through location of the Fermi level within the impurity band. Nature Mater 11, 444–449 (2012). https://doi.org/10.1038/nmat3250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3250

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing