Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions

Abstract

We report the formation of mesoporous organohydrogels from oil-in-water nanoemulsions containing an end-functionalized oligomeric gelator in the aqueous phase. The nanoemulsions exhibit an abrupt thermoreversible transition from a low-viscosity liquid to a fractal-like colloidal gel of droplets with mesoscale porosity and solid-like viscoelasticity with moduli approaching 100 kPa, possibly the highest reported for an emulsion-based system. We hypothesize that gelation is brought about by temperature-induced interdroplet bridging of the gelator, as shown by its dependence on the gelator chemistry. The use of photocrosslinkable gelators enables the freezing of the nanoemulsion’s microstructure into a soft hydrogel nanocomposite containing a large fraction of dispersed liquid hydrophobic compartments, and we show its use in the encapsulation and release of lipophilic biomolecules. The tunable structural, mechanical and optical properties of these organohydrogels make them a robust material platform suitable for a wide range of applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermoreversible formation of a nanoemulsion organohydrogel.
Figure 2: Microstructural characterization of the nanoemulsion organohydrogel described in Fig. 1.
Figure 3: Control of organohydrogel properties through variation of PEG end-functional chemistry.
Figure 4: Organohydrogel formation occurs over a wide range of nanoemulsion formulation conditions.
Figure 5: The drop-size dependence of organohydrogel rheology indicates a gel–paste transition.
Figure 6: Photocrosslinking of organohydrogels allows for ‘freezing’ of the nanoemulsion microstructure, yielding soft composites with unique properties.

Similar content being viewed by others

References

  1. Bell, C. L. & Peppas, N. A. Water, solute and protein diffusion in physiologically responsive hydrogels of poly(methacrylic acid-g-ethylene glycol). Biomaterials 17, 1203–1218 (1996).

    Article  CAS  Google Scholar 

  2. Pelton, R. Temperature-sensitive aqueous microgels. Adv. Colloid Interface Sci. 85, 1–33 (2000).

    Article  CAS  Google Scholar 

  3. Eddington, D. T. & Beebe, D. J. Flow control with hydrogels. Adv. Drug Deliv. Rev. 56, 199–210 (2004).

    Article  CAS  Google Scholar 

  4. Lee, K. Y. & Mooney, D. J. Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1879 (2001).

    Article  CAS  Google Scholar 

  5. Langer, R. & Tirrell, D. A. Designing materials for biology and medicine. Nature 428, 487–492 (2004).

    Article  CAS  Google Scholar 

  6. Peppas, N. A., Hilt, J. Z., Khademhosseini, A. & Langer, R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006).

    Article  CAS  Google Scholar 

  7. Vintiloiu, A. & Leroux, J. C. Organogels and their use in drug delivery—a review. J. Control. Release 125, 179–192 (2008).

    Article  CAS  Google Scholar 

  8. Jung, J. H., Ono, Y. & Shinkai, S. Novel silica structures which are prepared by transcription of various superstructures formed in organogels. Langmuir 16, 1643–1649 (2000).

    Article  CAS  Google Scholar 

  9. Ajayaghosh, A., Praveen, V. K. & Vijayakumar, C. Organogels as scaffolds for excitation energy transfer and light harvesting. Chem. Soc. Rev. 37, 109–122 (2008).

    Article  CAS  Google Scholar 

  10. Panda, P. et al. Stop-flow lithography to generate cell-laden microgel particles. Lab Chip 8, 1056–1061 (2008).

    Article  CAS  Google Scholar 

  11. Gombotz, W. R. & Wee, S. F. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31, 267–285 (1998).

    Article  CAS  Google Scholar 

  12. Hoare, T. R. & Kohane, D. S. Hydrogels in drug delivery: Progress and challenges. Polymer 49, 1993–2007 (2008).

    Article  CAS  Google Scholar 

  13. Lee, M. N. & Mohraz, A. Bicontinuous macroporous materials from Bijel templates. Adv. Mater. 22, 4836–4841 (2010).

    Article  CAS  Google Scholar 

  14. Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B. & Graves, S. M. Nanoemulsions: Formation, structure, and physical properties. J. Phys. Condens. Matter 18, R635–R666 (2006).

    Article  CAS  Google Scholar 

  15. Wooster, T. J., Golding, M. & Sanguansri, P. Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir 24, 12758–12765 (2008).

    Article  CAS  Google Scholar 

  16. Winter, H. H. & Chambon, F. Analysis of linear viscoelasticity of a cross-linking polymer at the gel point. J. Rheol. 30, 367–382 (1986).

    Article  CAS  Google Scholar 

  17. Coussot, P. Rheophysics of pastes: A review of microscopic modelling approaches. Soft Matter. 3, 528–540 (2007).

    Article  CAS  Google Scholar 

  18. Mason, T. G., Bibette, J. & Weitz, D. A. Yielding and flow of monodisperse emulsions. J. Colloid Interface Sci. 179, 439–448 (1996).

    Article  CAS  Google Scholar 

  19. Wilking, J. N. & Mason, T. G. Irreversible shear-induced vitrification of droplets into elastic nanoemulsions by extreme rupturing. Phys. Rev. E 75, 041407 (2007).

    Article  Google Scholar 

  20. Luisi, P. L., Scartazzini, R., Haering, G. & Schurtenberger, P. Organogels from water-in-oil microemulsions. Colloid Polym. Sci. 268, 356–374 (1990).

    Article  CAS  Google Scholar 

  21. Filali, M. et al. Robust phase behavior of model transient networks. J. Phys. Chem. B 105, 10528–10535 (2001).

    Article  CAS  Google Scholar 

  22. Wu, H., Xie, J. J., Lattuada, M. & Morbidelli, M. Scattering structure factor of colloidal gels characterized by static light scattering, small-angle light scattering, and small-angle neutron scattering measurements. Langmuir 21, 3291–3295 (2005).

    Article  CAS  Google Scholar 

  23. Dibble, C. J., Kogan, M. & Solomon, M. J. Structure and dynamics of colloidal depletion gels: Coincidence of transitions and heterogeneity. Phys. Rev. E 74, 050401 (2006).

    Article  Google Scholar 

  24. Bagger-Jörgensen, H., Coppola, L., Thuresson, K., Olsson, U. & Mortensen, K. Phase behavior, microstructure, and dynamics in a nonionic microemulsion on addition of hydrophobically end-capped poly(ethylene oxide). Langmuir 13, 4204–4218 (1997).

    Article  Google Scholar 

  25. Michel, E., Filali, M., Aznar, R., Porte, G. & Appell, J. Percolation in a model transient network: Rheology and dynamic light scattering. Langmuir 16, 8702–8711 (2000).

    Article  CAS  Google Scholar 

  26. Porte, G., Ligoure, C., Appell, J. & Aznar, R. Bridging interactions due to telechelic linkers balanced by screened Coulombic repulsions. J. Stat. Mech. Theory Exp. P05005 (2006).

  27. Bhatia, S. R. & Russel, W. B. End-capped associative polymer chains between nanospheres: Attractions in ideal solutions. Macromolecules 33, 5713–5720 (2000).

    Article  CAS  Google Scholar 

  28. Cabane, B. Structure of some polymer detergent aggregates in water. J. Phys. Chem. 81, 1639–1645 (1977).

    Article  CAS  Google Scholar 

  29. Cabane, B. & Duplessix, R. Organization of surfactant micelles adsorbed on a polymer molecule in water—a neutron-scattering study. J. Physique 43, 1529–1542 (1982).

    Article  CAS  Google Scholar 

  30. Li, Y. J., Dubin, P. L., Havel, H. A., Edwards, S. L. & Dautzenberg, H. Complex-formation between polyelectrolyte and oppositely charged mixed micelles—soluble complexes vs coacervation. Langmuir 11, 2486–2492 (1995).

    Article  CAS  Google Scholar 

  31. Xia, J. L., Dubin, P. L. & Kim, Y. S. Complex-formation between poly(oxyethylene) and sodium dodecyl-sulfate micelles—light-scattering, electrophoresis, and dialysis equilibrium studies. J. Phys. Chem. 96, 6805–6811 (1992).

    Article  CAS  Google Scholar 

  32. Helgeson, M. E. & Wagner, N. J. Colloidal interactions mediated by end-adsorbing polymer-like micelles. J. Chem. Phys. 135, 084901 (2011).

    Article  Google Scholar 

  33. Rueb, C. J. & Zukoski, C. F. Viscoelastic properties of colloidal gels. J. Rheol. 41, 197–218 (1997).

    Article  CAS  Google Scholar 

  34. Dawson, K. A. The glass paradigm for colloidal glasses, gels, and other arrested states driven by attractive interactions. Curr. Opin. Colloid Interface Sci. 7, 218–227 (2002).

    Article  CAS  Google Scholar 

  35. Cates, M. E., Fuchs, M., Kroy, K., Poon, W. C. K. & Puertas, A. M. Theory and simulation of gelation, arrest and yielding in attracting colloids. J. Phys. Condens. Matter 16, S4861–S4875 (2004).

    Article  CAS  Google Scholar 

  36. Zaccarelli, E. Colloidal gels: Equilibrium and non-equilibrium routes. J. Phys. Condens. Matter 19, 323101 (2007).

    Article  Google Scholar 

  37. Kroy, K., Cates, M. E. & Poon, W. C. K. Cluster mode-coupling approach to weak gelation in attractive colloids. Phys. Rev. Lett. 92, 148302 (2004).

    Article  CAS  Google Scholar 

  38. Chen, Y. L. & Schweizer, K. S. Microscopic theory of gelation and elasticity in polymer-particle suspensions. J. Chem. Phys. 120, 7212–7222 (2004).

    Article  CAS  Google Scholar 

  39. Mason, T. G., Graves, S. M., Wilking, J. N. & Lin, M. Y. Effective structure factor of osmotically deformed nanoemulsions. J. Phys. Chem. B 110, 22097–22102 (2006).

    Article  CAS  Google Scholar 

  40. Kawada, H. et al. Structure and rheology of a self-standing nanoemulsion. Langmuir 26, 2430–2437 (2009).

    Article  Google Scholar 

  41. Chen, S. H., Rouch, J., Sciortino, F. & Tartaglia, P. Static and dynamic properties of water-in-oil microemulsions near the critical and percolation points. J. Phys. Condens. Matter 6, 10855–10883 (1994).

    Article  CAS  Google Scholar 

  42. Sprakel, J., van der Gucht, J., Stuart, M. A. C. & Besseling, N. A. M. Brownian particles in transient polymer networks. Phys. Rev. E 77, 061502 (2008).

    Article  Google Scholar 

  43. Helgeson, M. E. et al. Formation and rheology of viscoelastic double networks in wormlike micelle–nanoparticle mixtures. Langmuir 26, 8049–8060 (2010).

    Article  CAS  Google Scholar 

  44. Helgeson, M. E., Chapin, S. C. & Doyle, P. S. Hydrogel microparticles from lithographic processes: Novel materials for fundamental and applied colloid science. Curr. Opin. Colloid Interface Sci. 16, 106–117 (2011).

    Article  CAS  Google Scholar 

  45. Cates, M. E. & Clegg, P. S. Bijels: A new class of soft materials. Soft Matter 4, 2132–2138 (2008).

    Article  CAS  Google Scholar 

  46. Herzig, E. M., White, K. A., Schofield, A. B., Poon, W. C. K. & Clegg, P. S. Bicontinuous emulsions stabilized solely by colloidal particles. Nature Mater. 6, 966–971 (2007).

    Article  CAS  Google Scholar 

  47. Mitragotri, S. & Lahann, J. Physical approaches to biomaterial design. Nature Mater. 8, 15–23 (2009).

    Article  CAS  Google Scholar 

  48. Kolishetti, N. et al. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc. Natl Acad. Sci. USA 107, 17939–17944 (2010).

    Article  CAS  Google Scholar 

  49. Meleson, K., Graves, S. & Mason, T. G. Formation of concentrated nanoemulsions by extreme shear. Soft Matter 2, 109–123 (2004).

    Article  CAS  Google Scholar 

  50. Kline, S. R. Reduction and analysis of SANS and USANS data using IGOR Pro. J. Appl. Crystallogr. 39, 895–900 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Novartis-MIT Center for Continuous Manufacturing, as well as the support of the National Institute of Standards and Technology, US Department of Commerce, in providing the neutron research facilities used in this work, supported in part by the National Science Foundation under agreement DMR-0454672. P.S.D. and H.Z.A. acknowledge support from the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the US Army Research Office. The content of the information does not necessarily reflect the position or the policy of the government, and no official endorsement should be inferred. We thank G. McKinley for the use of rheometry equipment in this work.

Author information

Authors and Affiliations

Authors

Contributions

M.E.H. and P.S.D. designed the experiments. M.E.H. and S.E.M. prepared the nanoemulsions and carried out rheology, neutron scattering and photopolymerization experiments. M.E.H. carried out analysis of SANS/USANS data. M.E.H. and H.Z.A. carried out flow lithography and triggered release studies. M.E.H., S.E.M., H.Z.A. and P.S.D. prepared the manuscript.

Corresponding author

Correspondence to Patrick S. Doyle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helgeson, M., Moran, S., An, H. et al. Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions. Nature Mater 11, 344–352 (2012). https://doi.org/10.1038/nmat3248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing