Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In situ evidence for chirality-dependent growth rates of individual carbon nanotubes

Abstract

Chiral-selective growth of single-walled carbon nanotubes (SWNTs) remains a great challenge that hinders their use in applications such as electronics and medicine. Recent experimental1,2 and theoretical3,4 reports have begun to address this problem by suggesting that selectivity may be achieved during nucleation by changing the catalyst composition or structure. Nevertheless, to establish a rational basis for chiral-selective synthesis, the underlying mechanisms governing nucleation, growth, and termination of SWNTs must be better understood. To this end, we report the first measurements of growth rates of individual SWNTs through in situ Raman spectroscopy and correlate them with their chiral angles. Our results show that the growth rates are directly proportional to the chiral angles, in agreement with recent theoretical predictions5,6. Importantly, the evidence singles out the growth stage as responsible for the chiral distribution—distinct from nucleation and termination which might also affect the final product distribution. Our results suggest a route to chiral-selective synthesis of SWNTs through rational synthetic design strategies based on kinetic control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In situ Raman spectroscopy and growth of a SWNT.
Figure 2: SEM image and Raman spectrum from an individual SWNT.
Figure 3: Chirality-dependent growth of SWNTs.

Similar content being viewed by others

References

  1. Chiang, W-H. & Sankaran, R. M. Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1−x nanoparticles. Nature Mater. 8, 882–886 (2009).

    Article  CAS  Google Scholar 

  2. Harutyunyan, A. R. et al. Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326, 116–120 (2009).

    Article  CAS  Google Scholar 

  3. Reich, S., Li, L. & Robertson, J. Control the chirality of carbon nanotubes by epitaxial growth. Chem. Phys. Lett. 421, 469–472 (2006).

    Article  CAS  Google Scholar 

  4. Koziol, K. K. K., Ducati, C. & Windle, A. H. Carbon nanotubes with catalyst controlled chiral angle. Chem. Mater. 22, 4904–4911 (2010).

    Article  CAS  Google Scholar 

  5. Ding, F., Harutyunyan, A. & Yakobson, B. Dislocation theory of chirality-controlled nanotube growth. Proc. Natl Acad. Sci. USA 106, 2506–2509 (2009).

    Article  CAS  Google Scholar 

  6. Dumlich, H. & Reich, S. Chirality-dependent growth rate of carbon nanotubes: A theoretical study. Phys. Rev. B 82, 085421 (2010).

    Article  Google Scholar 

  7. Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Physical Properties of Carbon Nanotubes (Imperial College Press, 1998).

    Book  Google Scholar 

  8. Bachilo, S. M. et al. Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125, 11186–11187 (2003).

    Article  CAS  Google Scholar 

  9. Miyauchi, Y., Chiashi, S., Murakami, Y., Hayashida, Y. & Maruyama, S. Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol. Chem. Phys. Lett. 387, 198–203 (2004).

    Article  CAS  Google Scholar 

  10. Sato, Y. et al. Chiral-angle distribution for separated single-walled carbon nanotubes. Nano Lett. 8, 3151–3154 (2008).

    Article  CAS  Google Scholar 

  11. Hofmann, S. et al. In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett. 7, 602–608 (2007).

    Article  CAS  Google Scholar 

  12. Yoshida, H., Takeda, S., Uchiyama, T., Kohno, H. & Homma, Y. Atomic-scale in situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 8, 2082–2086 (2008).

    Article  CAS  Google Scholar 

  13. Sharma, R., Rez, P., Treacy, M. M. J. & Stuart, S. J. In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions. J. Electron Microsc. 54, 231–237 (2005).

    CAS  Google Scholar 

  14. Puretzky, A. A., Geohegan, D. B., Jesse, S., Ivanov, I. N. & Eres, G. In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Appl. Phys. A 81, 223–240 (2005).

    Article  CAS  Google Scholar 

  15. Chiashi, S., Murakami, Y., Miyauchi, Y. & Maruyama, S. Cold wall CVD generation of single-walled carbon nanotubes and in situ Raman scattering measurements of the growth stage. Chem. Phys. Lett. 386, 89–94 (2004).

    Article  CAS  Google Scholar 

  16. Picher, M., Anglaret, E., Arenal, R. & Jourdain, V. Self-deactivation of single-walled carbon nanotube growth studied by in situ Raman measurements. Nano Lett. 9, 542–547 (2009).

    Article  CAS  Google Scholar 

  17. Li-Pook-Than, A., Lefebvre, J. & Finnie, P. Phases of carbon nanotube growth and population evolution from in situ Raman spectroscopy during chemical vapor deposition. J. Phys. Chem. C 114, 11018–11025 (2010).

    Article  CAS  Google Scholar 

  18. Raravikar, N. et al. Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes. Phys. Rev. B 66, 235424 (2002).

    Article  Google Scholar 

  19. Einarsson, E., Murakami, Y., Kadowaki, M. & Maruyama, S. Growth dynamics of vertically aligned single-walled carbon nanotubes from in situ measurements. Carbon 46, 923–930 (2008).

    Article  CAS  Google Scholar 

  20. Amama, P. B. et al. Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett. 9, 44–49 (2008).

    Article  Google Scholar 

  21. Rao, R., Menendez, J., Poweleit, C. D. & Rao, A. M. Anharmonic phonon lifetimes in carbon nanotubes: Evidence for a one-dimensional phonon decay bottleneck. Phys. Rev. Lett. 99, 047403–047404 (2007).

    Article  Google Scholar 

  22. Jorio, A. et al. Linewidth of the Raman features of individual single-wall carbon nanotubes. Phys. Rev. B 66, 115411 (2002).

    Article  Google Scholar 

  23. Jorio, A. et al. Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86, 1118–1121 (2001).

    Article  CAS  Google Scholar 

  24. Araujo, P. T. et al. Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes. Phys. Rev. B 77, 241403 (2008).

    Article  Google Scholar 

  25. Liu, Y., Dobrinsky, A. & Yakobson, B. I. Graphene edge from armchair to zigzag: The origins of nanotube chirality? Phys. Rev. Lett. 105, 235502 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J. Lou for substrate fabrication. We also thank J. Busbee, A. Harutyunyan, G. Chen, N. Pierce, P. T. Murray and E. A. Stach for helpful discussions and assistance, and S. Maruyama for assistance with sample design. The authors gratefully acknowledge funding from the Air Force Office of Scientific Research and the National Research Council.

Author information

Authors and Affiliations

Authors

Contributions

R.R. designed and conducted the experiments. D.L., R.R. and T.C. designed and constructed the instrumentation. D.L. wrote the software for data acquisition and analysis. B.I.Y. provided the theoretical analysis. B.M. guided the research direction and assisted in data analysis. All authors contributed to the writing and editing of the manuscript.

Corresponding authors

Correspondence to Rahul Rao or Benji Maruyama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, R., Liptak, D., Cherukuri, T. et al. In situ evidence for chirality-dependent growth rates of individual carbon nanotubes. Nature Mater 11, 213–216 (2012). https://doi.org/10.1038/nmat3231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing