Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Collective cell guidance by cooperative intercellular forces

Abstract

Cells comprising a tissue migrate as part of a collective. How collective processes are coordinated over large multi-cellular assemblies has remained unclear, however, because mechanical stresses exerted at cell–cell junctions have not been accessible experimentally. We report here maps of these stresses within and between cells comprising a monolayer. Within the cell sheet there arise unanticipated fluctuations of mechanical stress that are severe, emerge spontaneously, and ripple across the monolayer. Within that stress landscape, local cellular migrations follow local orientations of maximal principal stress. Migrations of both endothelial and epithelial monolayers conform to this behaviour, as do breast cancer cell lines before but not after the epithelial–mesenchymal transition. Collective migration in these diverse systems is seen to be governed by a simple but unifying physiological principle: neighbouring cells join forces to transmit appreciable normal stress across the cell–cell junction, but migrate along orientations of minimal intercellular shear stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Monolayer stress microscopy.
Figure 2: Intercellular stress maps and mechanical guidance of collectively migrating monolayers.
Figure 3: Stress maps and migration in monolayers of breast-cancer model systems.
Figure 4: Local cell guidance requires force transmission from cell-to-cell.
Figure 5: Signatures of cooperativity and associated glassy dynamics.

Similar content being viewed by others

References

  1. Kumar, S. & Weaver, V. M. Mechanics, malignancy, and metastasis: The force journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127 (2009).

    Article  Google Scholar 

  2. Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: Forcing tumour progression. Nat. Rev. Cancer 9, 108–122 (2009).

    Article  CAS  Google Scholar 

  3. Discher, D. et al. Biomechanics: Cell research and applications for the next decade. Ann. Biomed. Eng. 37, 847–859 (2009).

    Article  Google Scholar 

  4. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  Google Scholar 

  5. Paszek, M. J. & Weaver, V. M. The tension mounts: Mechanics meets morphogenesis and malignancy. J. Mammary Gland Biol. Neoplasia 9, 325–342 (2004).

    Article  Google Scholar 

  6. Bianco, A. et al. Two distinct modes of guidance signalling during collective migration of border cells. Nature 448, 362–365 (2007).

    Article  CAS  Google Scholar 

  7. Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10, 445–457 (2009).

    Article  CAS  Google Scholar 

  8. Giampieri, S. et al. Localized and reversible TGF[β] signalling switches breast cancer cells from cohesive to single cell motility. Nature Cell Biol. 11, 1287–1296 (2009).

    Article  CAS  Google Scholar 

  9. Montell, D. Morphogenetic cell movements: Diversity from modular mechanical properties. Science 322, 1502–1505 (2008).

    Article  CAS  Google Scholar 

  10. Shaw, T. J. & Martin, P. Wound repair at a glance. J. Cell Sci. 122, 3209–3213 (2009).

    Article  CAS  Google Scholar 

  11. Simpson, K. J. et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nature Cell Biol. 10, 1027–1038 (2008).

    Article  CAS  Google Scholar 

  12. Vitorino, P. & Meyer, T. Modular control of endothelial sheet migration. Genes Dev. 22, 3268–3281 (2008).

    Article  CAS  Google Scholar 

  13. Bindschadler, M. & McGrath, J. L. Sheet migration by wounded monolayers as an emergent property of single-cell dynamics. J. Cell Sci. 120, 876–884 (2007).

    Article  CAS  Google Scholar 

  14. Liu, Z. et al. Mechanical tugging force regulates the size of cell–cell junctions. Proc. Natl Acad. Sci. USA 107, 9944–9949 (2010).

    Article  CAS  Google Scholar 

  15. Trepat, X. et al. Physical forces during collective cell migration. Nature Phys. 5, 426–430 (2009).

    Article  CAS  Google Scholar 

  16. DePaola, N., Gimbrone, M. Jr, Davies, P. & Dewey, C. Jr Vascular endothelium responds to fluid shear stress gradients. Arteriosclerosis Thrombosis 12, 1254–1257 (1992).

    Article  CAS  Google Scholar 

  17. Farooqui, R. & Fenteany, G. Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement. J. Cell Sci. 118, 51–63 (2005).

    Article  CAS  Google Scholar 

  18. Lu, J. et al. Breast cancer metastasis: Challenges and opportunities. Cancer Res. 69, 4951–4953 (2009).

    Article  CAS  Google Scholar 

  19. Muthuswamy, S. K., Li, D., Lelievre, S., Bissell, M. J. & Brugge, J. S. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nature Cell Biol. 3, 785–792 (2001).

    Article  CAS  Google Scholar 

  20. Angelini, T. E., Hannezo, E., Trepat, X., Fredberg, J. J. & Weitz, D. A. Cell migration driven by cooperative substrate deformation patterns. Phys. Rev. Lett. 104, 168104 (2010).

    Article  Google Scholar 

  21. Szabó, B. et al. Phase transition in the collective migration of tissue cells: Experiment and model. Phys. Rev. E 74, 061908 (2006).

    Article  Google Scholar 

  22. Parisi, G. & Zamponi, F. Mean-field theory of hard sphere glasses and jamming. Rev. Mod. Phys. 82, 789–845 (2010).

    Article  Google Scholar 

  23. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    Article  CAS  Google Scholar 

  24. Angelini, T. E. et al. Glass-like dynamics of collective cell migration. Proc. Natl Acad. Sci. USA 108, 4714–4719 (2011).

    Article  CAS  Google Scholar 

  25. Garrahan, J. P. Dynamic heterogeneity comes to life. Proc. Natl Acad. Sci. USA 108, 4701–4702 (2011).

    Article  CAS  Google Scholar 

  26. Berthier, L. et al. Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310, 1797–1800 (2005).

    Article  CAS  Google Scholar 

  27. Keys, A., Abate, A., Glotzer, S. C. & Durian, D. J. Measurement of growing dynamical length scales and prediction of the jamming transition in granular material. Nature Phys. 3, 260–264 (2007).

    Article  CAS  Google Scholar 

  28. Toninelli, C., Wyart, M., Berthier, L., Biroli, G. & Bouchaud, J-P. Dynamical susceptibility of glass formers: Contrasting the predictions of theoretical scenarios. Phys. Rev. E 71, 041505 (2005).

    Article  Google Scholar 

  29. Hall, R. W. & Wolynes, P. G. Intermolecular forces and the glass transition. J. Phys. Chem. B 112, 301–312 (2007).

    Article  Google Scholar 

  30. Mueth, D. M., Jaeger, H. M. & Nagel, S. R. Force distribution in a granular medium. Phys. Rev. E 57, 3164–3169 (1998).

    Article  CAS  Google Scholar 

  31. Trappe, V., Prasad, V., Cipelletti, L., Segre, P. N. & Weitz, D. A. Jamming phase diagram for attractive particles. Nature 411, 772–775 (2001).

    Article  CAS  Google Scholar 

  32. del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009).

    Article  CAS  Google Scholar 

  33. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    Article  CAS  Google Scholar 

  34. Hu, K., Ji, L., Applegate, K. T., Danuser, G. & Waterman-Storer, C. M. Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007).

    Article  CAS  Google Scholar 

  35. le Duc, Q. et al. Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J. Cell Biol. 189, 1107–1115 (2010).

    Article  CAS  Google Scholar 

  36. Rajfur, Z., Roy, P., Otey, C., Romer, L. & Jacobson, K. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nature Cell Biol. 4, 286–293 (2002).

    Article  CAS  Google Scholar 

  37. Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. α -Catenin as a tension transducer that induces adherens junction development. Nature Cell Biol. 12, 533–542 (2010).

    Article  CAS  Google Scholar 

  38. Engler, A. J., Humbert, P. O., Wehrle-Haller, B. & Weaver, V. M. Multiscale modeling of form and function. Science 324, 208–212 (2009).

    Article  CAS  Google Scholar 

  39. Le Goff, L. & Lecuit, T. Gradient scaling and growth. Science 331, 1141–1142 (2011).

    Article  CAS  Google Scholar 

  40. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nature Rev. Mol. Cell Biol. 10, 21–33 (2009).

    Article  CAS  Google Scholar 

  41. Roca-Cusachs, P., Gauthier, N. C., del Rio, A. & Sheetz, M. P. Clustering of α5β1 integrins determines adhesion strength whereas αvβ3 and talin enable mechanotransduction. Proc. Natl Acad. Sci. USA 106, 16245–16250 (2009).

    Article  CAS  Google Scholar 

  42. Krishnan, R. et al. Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness. PLoS ONE 4, e5486 (2009).

    Article  Google Scholar 

  43. Trepat, X. et al. Universal physical responses to stretch in the living cell. Nature 447, 592–595 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

For their critical comments, we thank R. Hubmayr (Mayo Clinic), R. Phillips (CalTech), D. Navajas (University of Barcelona), L. B. Freund (Brown University), D. Tschumperlin (Harvard University), C. Forbes Dewey, Jr (MIT) and V. B. Shenoy (Brown University). We acknowledge the support of the European Research Council (Starting Grant FP7/ERC-242993), the Spanish Ministry of Science and Innovation (BFU2009-07595) and the National Institutes of Health (R01HL102373, R01HL107561, R01CA132633). We thank D. Yu (MDACC) for the kind gift of MCF-10A cell lines.

Author information

Authors and Affiliations

Authors

Contributions

D.T.T. developed algorithms and performed stress measurements. C.C.H. analysed data pertaining to force chains and glassy dynamics. D.T.T. and T.E.A. performed measurements of cell motions. K.R. and C.Y.P. assisted in protocol design and optimization. C.Y.P. performed staining of actin cytoskeleton. X.S-P. performed additional stress measurements on MDCK cells. M.H.Z. provided cancer cell lines and assisted with related data interpretation. D.T.T. and E.H.Z. made early conceptual contributions. J.P.B., D.A.W., J.J.F. and X.T. guided data interpretation and analysis. D.T.T., C.C.H., J.P.B., X.T. and J.J.F. wrote the manuscript.

Corresponding authors

Correspondence to Jeffrey J. Fredberg or Xavier Trepat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1453 kb)

Supplementary Movie

Supplementary Movie (AVI 2492 kb)

Supplementary Movie

Supplementary Movie (AVI 13501 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tambe, D., Corey Hardin, C., Angelini, T. et al. Collective cell guidance by cooperative intercellular forces. Nature Mater 10, 469–475 (2011). https://doi.org/10.1038/nmat3025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing