Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multimillimetre-large superlattices of air-stable iron–cobalt nanoparticles

Abstract

Self-organization of nanoparticles into two- and three-dimensional superlattices on a large scale is required for their implementation into nano- or microelectronic devices1,2. This is achieved, generally after a size-selection process3,4, through spontaneous self-organization on a surface5,6,7,8,9,10,11, layer-by-layer deposition12 or the three-layer technique of oversaturation3,14, but these techniques consider superlattices of limited size. An alternative method developed in our group involves the direct formation in solution of crystalline superlattices, for example of tin nanospheres, iron nanocubes or cobalt nanorods, but these are also of limited size15,16,17. Here, we report the first direct preparation in solution of multimillimetre-sized three-dimensional compact superlattices of nanoparticles. The 15-nm monodisperse FeCo particles adopt an unusual short-range atomic order that transforms into body-centred-cubic on annealing at 500 C. The latter process produces an air-stable material with magnetic properties suitable for radiofrequency applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global views of Fe–Co supercrystals from a macroscopic to a nanometric scale.
Figure 2: Structural analysis of Fe–Co nanoparticles.
Figure 3: Scattering and TEM analysis of annealed Fe–Co nanoparticles.

Similar content being viewed by others

References

  1. Alivisatos, A. P. Semiconductor clusters, nanocrystals and quantum dots. Science 271, 933–937 (1996).

    Article  Google Scholar 

  2. Carter, J. D., Cheng, G. & Guo, T. Growth of self-aligned crystalline cobalt silicide nanostructures from Co nanoparticles. J. Phys. Chem. B. 108, 6901–6904 (2004).

    Article  Google Scholar 

  3. Wang, Z. L. et al. Superlattices of self-assembled tetrahedral Ag nanocrystals. Adv. Mater. 10, 808–812 (1998).

    Article  Google Scholar 

  4. Park, J. et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Mater. 3, 891–895 (2004).

    Article  Google Scholar 

  5. Legrand, J., Ngo, A. T., Petit, C. & Pileni, M. P. Domain shapes and superlattices made of cobalt nanocrystals. Adv. Mater. 13, 58–62 (2001).

    Article  Google Scholar 

  6. Sigman, M. B., Saunders, A. E. & Korgel, B. A. Metal nanocrystal superlattice nucleation and growth. Langmuir 20, 978–983 (2004).

    Article  Google Scholar 

  7. Hoogenboom, J. P. et al. Template induced growth of close-packed colloidal crystals during solvent evaporation. Nano Lett. 4, 205–208 (2004).

    Article  Google Scholar 

  8. Sun, S. & Murray, C. B. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J. Appl. Phys. 85, 4325–4330 (1999).

    Article  Google Scholar 

  9. Stoeva, S. I. et al. Face-centered cubic and hexagonal closed-packed nanocrystal superlattices of gold nanoparticles prepared by different methods. J. Phys. Chem. B 107, 7441–7448 (2003).

    Article  Google Scholar 

  10. Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000).

    Article  Google Scholar 

  11. Lisiecki, I., Albouy, P. A. & Pileni, M. P. Face-centered cubic “supracrystals” of cobalt nanocrystals. Adv. Mater. 15, 712–716 (2003).

    Article  Google Scholar 

  12. Wang, Z. L. Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—from materials to nanodevices. Adv. Mater. 15, 432–436 (2003).

    Article  Google Scholar 

  13. Talapin, D. V. et al. A new approach to crystallization of CdSe nanoparticles into ordered three-dimensional superlattices. Adv. Mater. 13, 1868–1871 (2001).

    Article  Google Scholar 

  14. Shevchenko, E. V. et al. Colloidal synthesis and self-assembly of CoPt3 nanocrystals. J. Am. Chem. Soc. 124, 11480–11485 (2002).

    Article  Google Scholar 

  15. Soulantica, K., Maisonnat, A., Fromen, M. C., Casanove, M. J. & Chaudret, B. Spontaneous formation of ordered 3D super-lattices of nanocrystals from polydisperse colloidal solutions. Angew. Chem. Int. Edn Engl. 42, 1945–1949 (2003).

    Article  Google Scholar 

  16. Dumestre, F., Chaudret, B., Amiens, C., Renaud, P. & Fejes, P. Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)2]2 . Science 303, 821–823 (2004).

    Article  Google Scholar 

  17. Dumestre, F. et al. Unprecedented crystalline super-lattices of monodisperse cobalt nanorods. Angew. Chem. Int. Edn Engl. 42, 5213–5216 (2003).

    Article  Google Scholar 

  18. Duc, N. H., Danh, T. M., Tuan, N. A. & Teillet, J. Large magnetostrictive susceptibility in Tb-FeCo/FeCo multilayers. Appl. Phys. Lett. 78, 3648–3650 (2001).

    Article  Google Scholar 

  19. Cooke, M. D. et al. The effect of thermal treatment, composition and substrate on the texture and magnetic properties of FeCo thin films. J. Phys. D 33, 1450–1459 (2000).

    Article  Google Scholar 

  20. Albert, F. J., Katine, J. A., Buhrman, R. A. & Ralph, D. C. Spin-polarized current switching of a Co thin film nanomagnet. Appl. Phys. Lett. 77, 3809–3811 (2000).

    Article  Google Scholar 

  21. Garcia-Miquel, H., Bhagat, S. M., Lofland, S. E., Kurlyandskaya, G. V. & Svalov, A. V. Ferromagnetic resonance in FeCoNi electroplated wires. J. Appl. Phys. 94, 1868–1872 (2003).

    Article  Google Scholar 

  22. Willard, M. A., Laughlin, D. E. & McHenry, M. E. Ferromagnetic resonnance and eddy currents in high-permeable thin films. J. Appl. Phys. 87, 7091–7096 (2000).

    Article  Google Scholar 

  23. Corrias, A., Casula, M. F., Falqui, A. & Paschina, G. Evolution of the structure and magnetic properties of FeCo nanoparticles in an alumina aerogel matrix. Chem. Mater. 16, 3130–3138 (2004).

    Article  Google Scholar 

  24. Tang, S. L. et al. Nanostructure and magnetic properties of Fe69Co31 nanowire arrays. Chem. Phys. Lett. 384, 1–4 (2004).

    Article  Google Scholar 

  25. Zitoun, D. et al. Synthesis and magnetism of CoxRh1−x and CoxRu1−x nanoparticles. J. Phys. Chem. B 107, 6997–7005 (2003).

    Article  Google Scholar 

  26. Margeat, O., Amiens, C., Chaudret, B., Lecante, P. & Benfield, R. E. Chemical control of structural and magnetic properties of cobalt nanoparticles. Chem. Mater. 17, 107–111 (2005).

    Article  Google Scholar 

  27. Dassenoy, F. et al. Experimental evidence of structural evolution in ultrafine cobalt particles stabilized in different polymers. From a polytetrahedral arrangement to hexagonal structure. J. Chem. Phys. 112, 8137–8145 (2000).

    Article  Google Scholar 

  28. Dinega, D. P. & Bawendi, M. G. A solution-phase chemical approach to a new crystal structure of cobalt. Angew. Chem. Int. Edn 38, 1788–1791 (1999).

    Article  Google Scholar 

  29. Turgut, Z., Nuhfer, N. T., Piehler, H. R. & McHenry, M. E. Magnetic properties and microstructural observations of oxide coated FeCo nanocrystals before and after compaction. J. Appl. Phys. 85, 4406–4408 (1999).

    Article  Google Scholar 

  30. Turgut, Z., Huang, M.-Q., Gallagher, K., McHenry, M. E. & Majetich, S. A. Magnetic evidence for structural phase transformation in FeCo nanpocrystals produced by a carbon arc. J. Appl. Phys. 81, 4039–4041 (1997).

    Article  Google Scholar 

  31. Kechrakos, D. & Trohidou, K. N. Magnetic properties of dipolar interacting single domain particles. Phys. Rev. B 58, 12169–12177 (1998).

    Article  Google Scholar 

  32. Otsuka, S. & Rossi, M. Synthesis, structure, and properties of -cyclo-octenyl–cyclo-octa- 1,5-dienecobalt. J. Chem. Soc. A 2630–2633 (1968).

  33. Andersen, R. A. et al. Synthesis of bis[bis(trimethylsilyl)amido]iron(II). Structure and bonding in M[N(SiMe3)2]2 (M=Mn,Fe,Co) : Two coordinate transition-metal amides. Inorg. Chem. 27, 1782–1786 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank CNRS and FREESCALE S. P. S. for support, M. Vincent Collière, Lucien Datas and TEMSCAN service (Université Paul Sabatier Toulouse) for TEM, Mlle Isabelle Fourquaux and Mr Bruno Payré (CMEAB, Université Paul Sabatier Toulouse) for ultramicrotomy and Alain Mari for the magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Chaudret.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2 and S3 (PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desvaux, C., Amiens, C., Fejes, P. et al. Multimillimetre-large superlattices of air-stable iron–cobalt nanoparticles. Nature Mater 4, 750–753 (2005). https://doi.org/10.1038/nmat1480

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1480

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing