Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cidea is an essential transcriptional coactivator regulating mammary gland secretion of milk lipids

Abstract

Adequate lipid secretion by mammary glands during lactation is essential for the survival of mammalian offspring. However, the mechanism governing this process is poorly understood. Here we show that Cidea is expressed at high levels in lactating mammary glands and its deficiency leads to premature pup death as a result of severely reduced milk lipids. Furthermore, the expression of xanthine oxidoreductase (XOR), an essential factor for milk lipid secretion, is markedly lower in Cidea-deficient mammary glands. Conversely, ectopic Cidea expression induces the expression of XOR and enhances lipid secretion in vivo. Unexpectedly, as Cidea has heretofore been thought of as a cytoplasmic protein, we detected it in the nucleus and found it to physically interact with transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) in mammary epithelial cells. We also observed that Cidea induces XOR expression by promoting the association of C/EBPβ onto, and the dissociation of HDAC1 from, the promoter of the Xdh gene encoding XOR. Finally, we found that Fsp27, another CIDE family protein, is detected in the nucleus and interacts with C/EBPβ to regulate expression of a subset of C/EBPβ downstream genes in adipocytes. Thus, Cidea acts as a previously unknown transcriptional coactivator of C/EBPβ in mammary glands to control lipid secretion and pup survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cidea is expressed at higher levels in mammary glands of pregnant and lactating mice.
Figure 2: Impaired milk lipid secretion in lactating Cidea−/− female mice.
Figure 3: Cidea controls lipid secretion by regulating XOR expression.
Figure 4: Cidea interacts with C/EBPβ and activates the Xdh promoter.
Figure 5: Cidea and Fsp27 are localized to the nucleus.
Figure 6: Cidea binds to promoters of a subset of C/EBPβ target genes and enhances the DNA binding affinity of C/EBPβ.

Similar content being viewed by others

References

  1. Linzell, J.L. & Peaker, M. Mechanism of milk secretion. Physiol. Rev. 51, 564–597 (1971).

    Article  CAS  PubMed  Google Scholar 

  2. Mather, I.H. & Keenan, T.W. Origin and secretion of milk lipids. J. Mammary Gland Biol. Neoplasia 3, 259–273 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Smith, S. & Abraham, S. The composition and biosynthesis of milk fat. Adv. Lipid Res. 13, 195–239 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. McManaman, J.L., Palmer, C.A., Wright, R.M. & Neville, M.C. Functional regulation of xanthine oxidoreductase expression and localization in the mouse mammary gland: evidence of a role in lipid secretion. J. Physiol. (Lond.) 545, 567–579 (2002).

    Article  CAS  Google Scholar 

  5. Vorbach, C., Scriven, A. & Capecchi, M.R. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev. 16, 3223–3235 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ogg, S.L., Weldon, A.K., Dobbie, L., Smith, A.J. & Mather, I.H. Expression of butyrophilin (Btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. Proc. Natl. Acad. Sci. USA 101, 10084–10089 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Robenek, H. et al. Butyrophilin controls milk fat globule secretion. Proc. Natl. Acad. Sci. USA 103, 10385–10390 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Smith, S.J. et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat. Genet. 25, 87–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Beigneux, A.P. et al. Agpat6–a novel lipid biosynthetic gene required for triacylglycerol production in mammary epithelium. J. Lipid Res. 47, 734–744 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boxer, R.B. et al. Isoform-specific requirement for Akt1 in the developmental regulation of cellular metabolism during lactation. Cell Metab. 4, 475–490 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Cheung, K.J. et al. Xanthine oxidoreductase is a regulator of adipogenesis and PPARγ activity. Cell Metab. 5, 115–128 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Seymour, K.J. et al. Stress activation of mammary epithelial cell xanthine oxidoreductase is mediated by p38 MAPK and CCAAT/enhancer-binding protein-β. J. Biol. Chem. 281, 8545–8558 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Seagroves, T.N. et al. C/EBPβ, but not C/EBPα, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes Dev. 12, 1917–1928 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nishino, N. et al. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J. Clin. Invest. 118, 2808–2821 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Toh, S.Y. et al. Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLoS ONE 3, e2890 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ye, J. et al. Cideb, an ER- and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab. 9, 177–190 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Li, J.Z. et al. Cideb regulates diet-induced obesity, liver steatosis, and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes 56, 2523–2532 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Pettersson, A.T. et al. Characterization of the human CIDEA promoter in fat cells. Int. J. Obes. (Lond.) 32, 1380–1387 (2008).

    Article  CAS  Google Scholar 

  19. Puri, V. et al. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc. Natl. Acad. Sci. USA 105, 7833–7838 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Zhou, Z. et al. Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat. Genet. 35, 49–56 (2003).

    Article  PubMed  Google Scholar 

  21. Dahlman, I. et al. The CIDEA gene V115F polymorphism is associated with obesity in Swedish subjects. Diabetes 54, 3032–3034 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Neville, M.C. & Picciano, M.F. Regulation of milk lipid secretion and composition. Annu. Rev. Nutr. 17, 159–183 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Shekar, P.C. et al. κ-casein-deficient mice fail to lactate. Proc. Natl. Acad. Sci. USA 103, 8000–8005 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Jeong, J. et al. The PRY/SPRY/B30.2 domain of butyrophilin 1A1 (BTN1A1) binds to xanthine oxidoreductase: implications for the function of BTN1A1 in the mammary gland and other tissues. J. Biol. Chem. 284, 22444–22456 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McManaman, J.L., Palmer, C.A., Anderson, S., Schwertfeger, K. & Neville, M.C. Regulation of milk lipid formation and secretion in the mouse mammary gland. Adv. Exp. Med. Biol. 554, 263–279 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Kudo, N. et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242, 540–547 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Xu, L., Kang, Y., Col, S. & Massague, J. Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFβ signaling complexes in the cytoplasm and nucleus. Mol. Cell 10, 271–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Wiper-Bergeron, N., Wu, D., Pope, L., Schild-Poulter, C. & Hache, R.J. Stimulation of preadipocyte differentiation by steroid through targeting of an HDAC1 complex. EMBO J. 22, 2135–2145 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paz-Priel, I., Houng, S., Dooher, J. & Friedman, A.D. C/EBPα and C/EBPα oncoproteins regulate nfkb1 and displace histone deacetylases from NF-κB p50 homodimers to induce NF-κB target genes. Blood 117, 4085–4094 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, S., Miller, M., Shuman, J.D. & Johnson, P.F. CCAAT/Enhancer-binding protein β DNA binding is auto-inhibited by multiple elements that also mediate association with p300/CREB-binding protein (CBP). J. Biol. Chem. 285, 21399–21410 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Borland, G., Bird, R.J., Palmer, T.M. & Yarwood, S.J. Activation of protein kinase Cα by EPAC1 is required for the ERK- and CCAAT/enhancer-binding protein β-dependent induction of the SOCS-3 gene by cyclic AMP in COS1 cells. J. Biol. Chem. 284, 17391–17403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cui, T.X. et al. C/EBPβ mediates growth hormone-regulated expression of multiple target genes. Mol. Endocrinol. 25, 681–693 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sahay, B. et al. CD14 signaling restrains chronic inflammation through induction of p38-MAPK/SOCS-dependent tolerance. PLoS Pathog. 5, e1000687 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yarwood, S.J., Borland, G., Sands, W.A. & Palmer, T.M. Identification of CCAAT/enhancer-binding proteins as exchange protein activated by cAMP-activated transcription factors that mediate the induction of the SOCS-3 gene. J. Biol. Chem. 283, 6843–6853 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. McCarthy, T.L., Pham, T.H., Knoll, B.I. & Centrella, M. Prostaglandin E2 increases transforming growth factor-β type III receptor expression through CCAAT enhancer-binding protein δ in osteoblasts. Mol. Endocrinol. 21, 2713–2724 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Dong, J., Tsai-Morris, C.H. & Dufau, M.L. A novel estradiol/estrogen receptor alpha-dependent transcriptional mechanism controls expression of the human prolactin receptor. J. Biol. Chem. 281, 18825–18836 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Goldhar, A.S., Duan, R., Ginsburg, E. & Vonderhaar, B.K. Progesterone induces expression of the prolactin receptor gene through cooperative action of Sp1 and C/EBP. Mol. Cell. Endocrinol. 335, 148–157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Karaya, K. et al. Regulation of Id2 expression by CCAAT/enhancer binding protein β. Nucleic Acids Res. 33, 1924–1934 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mori, S., Nishikawa, S.I. & Yokota, Y. Lactation defect in mice lacking the helix-loop-helix inhibitor Id2. EMBO J. 19, 5772–5781 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kleinberg, D.L., Feldman, M. & Ruan, W. IGF-I: an essential factor in terminal end bud formation and ductal morphogenesis. J. Mammary Gland Biol. Neoplasia 5, 7–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Wessells, J., Yakar, S. & Johnson, P.F. Critical prosurvival roles for C/EBPβ and insulin-like growth factor I in macrophage tumor cells. Mol. Cell. Biol. 24, 3238–3250 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Drost, J. et al. BRD7 is a candidate tumour suppressor gene required for p53 function. Nat. Cell Biol. 12, 380–389 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Gomes, N.P. & Espinosa, J.M. Gene-specific repression of the p53 target gene PUMA via intragenic CTCF-Cohesin binding. Genes Dev. 24, 1022–1034 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Amir-Zilberstein, L. et al. Differential regulation of NF-κB by elongation factors is determined by core promoter type. Mol. Cell. Biol. 27, 5246–5259 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kulyté, A. et al. CIDEA interacts with liver X receptors in white fat cells. FEBS Lett. 585, 744–748 (2011).

    Article  PubMed  Google Scholar 

  47. Neifert, M.R. Prevention of breastfeeding tragedies. Pediatr. Clin. North Am. 48, 273–297 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Trotman, L.C. et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128, 141–156 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ball, R.K., Friis, R.R., Schoenenberger, C.A., Doppler, W. & Groner, B. Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. EMBO J. 7, 2089–2095 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qi, J. et al. Downregulation of AMP-activated protein kinase by Cidea-mediated ubiquitination and degradation in brown adipose tissue. EMBO J. 27, 1537–1548 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, Q. et al. Axin determines cell fate by controlling the p53 activation threshold after DNA damage. Nat. Cell Biol. 11, 1128–1134 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Yu, L. Huang, Y. Hong and Y. Zhou for helpful discussions, and B. Groner (Georg-Speyer-Haus Institute for Biomedical Research) for providing HC11 cells. This work was supported by grants from the National Basic Research Program (2007CB914404, 2011CB910800) from the Ministry of Science and Technology of China and the National Natural Science Foundation of China (30925017 and 31030038 to P.L., 90913024 to Y.S.), and from the National University of Singapore and the Singapore National Research Foundation under CRP award no. 2007-04 to M.R.W.

Author information

Authors and Affiliations

Authors

Contributions

W.W. devised the hypothesis, designed and performed the experiments, analyzed the data and wrote the first draft of manuscript. N.L., S.Z., J.Z., H.Q. and Y.C. performed the experiments. G.S., M.R.W. performed lipidomics analysis. J.Y. performed EM analysis. Y.X. and Y.S. helped with experimental design and data analysis. P. L. is responsible for the formulation of the hypothesis, experimental design, data coordination, analysis and interpretation. P.L. is also responsible for the writing, revision and finalization of the manuscript as well as for the decision to submit the manuscript for publication. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Peng Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–3 and Supplementary Methods (PDF 23506 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Lv, N., Zhang, S. et al. Cidea is an essential transcriptional coactivator regulating mammary gland secretion of milk lipids. Nat Med 18, 235–243 (2012). https://doi.org/10.1038/nm.2614

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2614

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing