Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease

Abstract

Cyclophilin D (CypD, encoded by Ppif) is an integral part of the mitochondrial permeability transition pore, whose opening leads to cell death. Here we show that interaction of CypD with mitochondrial amyloid-β protein (Aβ) potentiates mitochondrial, neuronal and synaptic stress. The CypD-deficient cortical mitochondria are resistant to Aβ- and Ca2+-induced mitochondrial swelling and permeability transition. Additionally, they have an increased calcium buffering capacity and generate fewer mitochondrial reactive oxygen species. Furthermore, the absence of CypD protects neurons from Aβ- and oxidative stress–induced cell death. Notably, CypD deficiency substantially improves learning and memory and synaptic function in an Alzheimer's disease mouse model and alleviates Aβ-mediated reduction of long-term potentiation. Thus, the CypD-mediated mitochondrial permeability transition pore is directly linked to the cellular and synaptic perturbations observed in the pathogenesis of Alzheimer's disease. Blockade of CypD may be a therapeutic strategy in Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of CypD with Aβ.
Figure 2: Colocalization of CypD and Aβ in mitochondria.
Figure 3: Effect of CypD deficiency on mitochondrial function in mAPP mice.
Figure 4: Effect of CypD deficiency on ROS production and mitochondrial function in mAPP mice.
Figure 5: Aβ- and H2O2-induced mitochondrial and neuronal dysfunction in cultured neurons.
Figure 6: Effect of CypD deficiency on spatial learning and memory and on Aβ-induced LTP.

References

  1. Mauren, I., Zierz, S. & Moller, H.J. A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol. Aging 21, 455–462 (2000).

    Article  Google Scholar 

  2. Blass, J.P. The mitochondrial spiral. An adequate cause of dementia in the Alzheimer's syndrome. Ann. NY Acad. Sci. 924, 170–183 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. Sheehan, J.P. et al. Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer's disease. J. Neurosci. 17, 4612–4622 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Cardoso, S.M., Santana, I., Swerdlow, R.H. & Oliveira, C.R. Mitochondria dysfunction of Alzheimer's disease cybrids enhances Aβ toxicity. J. Neurochem. 89, 1417–1426 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. Lin, M.T. & Beal, M.F. Alzheimer's APP mangles mitochondria. Nat. Med. 12, 1241–1243 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. Caspersen, C. et al. Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease. FASEB J. 19, 2040–2041 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. Manczak, M. et al. Mitochondria are a direct site of Aβ accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum. Mol. Genet. 15, 1437–1449 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. Takuma, K. et al. ABAD enhances Aβ-induced cell stress via mitochondrial dysfunction. FASEB J. 19, 597–598 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. Lustbader, J.W. et al. ABAD directly links Aβ to mitochondrial toxicity in Alzheimer's disease. Science 304, 448–452 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. Reddy, P.H. Amyloid precursor protein–mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer's disease. J. Neurochem. 96, 1–13 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. Wang, J. et al. Hepatitis C virus non-structural protein NS5A interacts with FKBP38 and inhibits apoptosis in Huh7 hepatoma cells. FEBS Lett. 580, 4392–4400 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. Shukkur, E.A. et al. Mitochondrial dysfunction and tau hyperphosphorylation in Ts1Cje, a mouse model for Down syndrome. Hum. Mol. Genet. 15, 2752–2762 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. Hirai, K. et al. Mitochondrial abnormalities in Alzheimer's disease. J. Neurosci. 21, 3017–3023 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Crouch, P.J. et al. Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-β1–42. J. Neurosci. 25, 672–679 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Devi, L., Prabhu, B.M., Galati, D.F., Avadhani, N.G. & Anandatheerthavarada, H.K. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction. J. Neurosci. 26, 9057–9068 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Fernandez-Vizarra, P. et al. Intra- and extracellular Aβ and PHF in clinically evaluated cases of Alzheimer's disease. Histol. Histopathol. 19, 823–844 (2004).

    PubMed  CAS  Google Scholar 

  17. Chen, X., Stern, D. & Yan, S.D. in Neurobiology of Alzheimer's Disease (eds. Dawbarn, D. & Allen, S.J.) 227–244 (Oxford University Press, Oxford, 2007).

    Google Scholar 

  18. Cardoso, S.M., Santos, S., Swerdlow, R.H. & Oliveira, C.R. Functional mitochondria are required for amyloid β–mediated neurotoxicity. FASEB J. 15, 1439–1441 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. Crompton, M. Mitochondria and aging: a role for the permeability transition? Aging Cell 3, 3–6 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. Halestrap, A.P., McStay, G.P. & Clarke, S.J. The permeability transition pore complex: another view. Biochimie 84, 153–166 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. Halestrap, A. Biochemistry: a pore way to die. Nature 434, 578–579 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. Zamzami, N., Larochette, N. & Kroemer, G. Mitochondrial permeability transition in apoptosis and necrosis. Cell Death Differ. 12 Suppl 2, 1478–1480 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. Crompton, M., Barksby, E., Johnson, N. & Capano, M. Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie 84, 143–152 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. Halestrap, A.P. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem. Soc. Trans. 34, 232–237 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. Bernardi, P. et al. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 273, 2077–2099 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. Crompton, M., Virji, S. & Ward, J.M. Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur. J. Biochem. 258, 729–735 (1998).

    Article  PubMed  CAS  Google Scholar 

  27. Halestrap, A.P., Woodfield, K.Y. & Connern, C.P. Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J. Biol. Chem. 272, 3346–3354 (1997).

    Article  PubMed  CAS  Google Scholar 

  28. Connern, C.P. & Halestrap, A.P. Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive non-specific channel. Biochem. J. 302, 321–324 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Andreeva, L., Heads, R. & Green, C.J. Cyclophilins and their possible role in the stress response. Int. J. Exp. Pathol. 80, 305–315 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Baines, C.P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658–662 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. Pastorino, J.G., Chen, S.T., Tafani, M., Snyder, J.W. & Farber, J.L. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J. Biol. Chem. 273, 7770–7775 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. Nakagawa, T. et al. Cyclophilin D–dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652–658 (2005).

    Article  PubMed  CAS  Google Scholar 

  33. Basso, E. et al. Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J. Biol. Chem. 280, 18558–18561 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. Schinzel, A.C. et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl. Acad. Sci. USA 102, 12005–12010 (2005).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Yan, Y. et al. Surface plasmon resonance and nuclear magnetic resonance studies of ABAD-Aβ interaction. Biochemistry 46, 1724–1731 (2007).

    Article  PubMed  CAS  Google Scholar 

  36. Aguilar, M.I. & Small, D.H. Surface plasmon resonance for the analysis of β-amyloid interactions and fibril formation in Alzheimer's disease research. Neurotox. Res. 7, 17–27 (2005).

    Article  PubMed  CAS  Google Scholar 

  37. Bergersen, L.H., Storm-Mathisen, J. & Gundersen, V. Immunogold quantification of amino acids and proteins in complex subcellular compartments. Nat. Protoc. 3, 144–152 (2008).

    Article  PubMed  CAS  Google Scholar 

  38. Vitolo, O.V. et al. Amyloid β-peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc. Natl. Acad. Sci. USA 99, 13217–13221 (2002).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Klann, E., Roberson, E.D., Knapp, L.T. & Sweatt, J.D. A role for superoxide in protein kinase C activation and induction of long-term potentiation. J. Biol. Chem. 273, 4516–4522 (1998).

    Article  PubMed  CAS  Google Scholar 

  40. Kamsler, A. & Segal, M. Paradoxical actions of hydrogen peroxide on long-term potentiation in transgenic superoxide dismutase-1 mice. J. Neurosci. 23, 10359–10367 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Naga, K.K., Sullivan, P.G. & Geddes, J.W. High cyclophilin D content of synaptic mitochondria results in increased vulnerability to permeability transition. J. Neurosci. 27, 7469–7475 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Eliseev, R.A. et al. Role of cyclophilin D in the resistance of brain mitochondria to the permeability transition. Neurobiol. Aging 28, 1532–1542 (2007).

    Article  PubMed  CAS  Google Scholar 

  43. Morais Cardoso, S., Swerdlow, R.H. & Oliveira, C.R. Induction of cytochrome c-mediated apoptosis by amyloid β 25–35 requires functional mitochondria. Brain Res. 931, 117–125 (2002).

    Article  PubMed  CAS  Google Scholar 

  44. Moreira, P.I., Santos, M.S., Moreno, A., Rego, A.C. & Oliveira, C. Effect of amyloid β-peptide on permeability transition pore: a comparative study. J. Neurosci. Res. 69, 257–267 (2002).

    Article  PubMed  CAS  Google Scholar 

  45. Maragos, W.F. et al. Methamphetamine toxicity is attenuated in mice that overexpress human manganese superoxide dismutase. Brain Res. 878, 218–222 (2000).

    Article  PubMed  CAS  Google Scholar 

  46. Hensley, K. et al. A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Natl. Acad. Sci. USA 91, 3270–3274 (1994).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Serrano, F. & Klann, E. Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res. Rev. 3, 431–443 (2004).

    Article  PubMed  CAS  Google Scholar 

  48. Liu, R. et al. Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc. Natl. Acad. Sci. USA 100, 8526–8531 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Esposito, L. et al. Reduction in mitochondrial superoxide dismutase modulates Alzheimer's disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice. J. Neurosci. 26, 5167–5179 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Arancio, O. et al. RAGE potentiates Aβ-induced perturbation of neuronal function in transgenic mice. EMBO J. 23, 4096–4105 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Yan, S.D. et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature 382, 685–691 (1996).

    Article  PubMed  CAS  Google Scholar 

  52. Xie, C.W. Calcium-regulated signaling pathways: role in amyloid β–induced synaptic dysfunction. Neuromolecular Med. 6, 53–64 (2004).

    Article  PubMed  CAS  Google Scholar 

  53. Origlia, N. et al. Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-β–mediated cortical synaptic dysfunction. J. Neurosci. 28, 3521–3530 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Hou, F.F. et al. Receptor for advanced glycation end products on human synovial fibroblasts: role in the pathogenesis of dialysis-related amyloidosis. J. Am. Soc. Nephrol. 13, 1296–1306 (2002).

    Article  PubMed  CAS  Google Scholar 

  55. Murakami, K. et al. Mitocondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J. Neurosci. 18, 205–213 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Friberg, H., Connern, C., Halestrap, A.P. & Wieloch, T. Differences in the activation of the mitochondrial permeability transition among brain regions in the rat correlate with selective vulnerability. J. Neurochem. 72, 2488–2497 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Public Health Service Commissioned Corps (PO1 AG17490, PO50 AG08702) and the Alzheimer's Association. We thank S. Katz for assistance with performing the behavioral experiments.

Author information

Authors and Affiliations

Authors

Contributions

H.D. designed and did experiments and assisted with the preparation of the manuscript. L.G. contributed to the study of in vitro cultured neurons. F.F. did quantitative real-time PCR experiments. L.G. and D.C. performed genotyping of transgenic mice. A.A.S. and G.M.M. conducted electron microscopy studies. Y.Y. and C.W. performed surface plasmon resonance experiments. F.J.G.-M. provided some suggestions. J.D.M. provided CypD-knockout mice. H.Z. and O.A. performed LTP experiments. J.P.V. provided information of human brain tissues. J.X.C. provided suggestions for the experimental design and assisted with the preparation of manuscript. S.D.Y. initiated, directed and supervised the research, designed and assisted experiments, analyzed data, developed the concept and wrote the manuscript.

Corresponding author

Correspondence to Shi Du Yan.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–6, Supplementary Table 1 and Supplementary Methods (PDF 1408 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, H., Guo, L., Fang, F. et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease. Nat Med 14, 1097–1105 (2008). https://doi.org/10.1038/nm.1868

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1868

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing