Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors

Abstract

The natural killer (NK) gene complex (NKC) encodes orphan lectin-like NK cell receptors that may explain uncharacterized NK cell specificities. Unlike other NKC-encoded receptors that recognize molecules with major histocompatibility complex (MHC) class I folds, here we show that mouse Nkrp1d and Nkrp1f bind specific C-type lectin-related (Clr) molecules. Nkrp1d mediated inhibition when recognizing Clrb, a molecule expressed in dendritic cells and macrophages. Nkrp1 (official gene name, Klrb1) and Clr are intertwined in a genetically conserved NKC region showing recombination suppression, reminiscent of plant self-incompatibility loci. Thus, these findings broaden the 'missing-self' hypothesis from solely involving MHC class I to including related NK cell receptors for lectin-like ligands, and reflect genetic strategies for biological self-recognition processes in other species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction of Nkrp1f reporter cells and tetramers with tumor cell lines.
Figure 2: Evolutionary, genomic and functional relationships between Nkrp1 and Clr gene families.
Figure 3: Clrb and Clrg are ligands for Nkrp1d and Nkrp1f, respectively.
Figure 4: Expression and inhibitory function of Nkrp1d in primary NK cells.
Figure 5: Clr expression in primary cells.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Kärre, K., Ljunggren, H.-G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678 (1986).

    Article  Google Scholar 

  2. Ljunggren, H.G. & Karre, K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol. Today 11, 237–44 (1990).

    Article  CAS  Google Scholar 

  3. Karlhofer, F.M., Ribaudo, R.K. & Yokoyama, W.M. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 358, 66–70 (1992).

    Article  CAS  Google Scholar 

  4. Colonna, M. Natural killer cell receptors specific for MHC class I molecules. Curr. Opin. Immunol. 8, 101–107 (1996).

    Article  CAS  Google Scholar 

  5. Long, E.O. Signal sequences stop killer cells. Nature 391, 740–741, 743 (1998).

    Article  CAS  Google Scholar 

  6. Moretta, A. et al. Receptors for HLA class-I molecules in human natural killer cells. Annu. Rev. Immunol. 14, 619–48 (1996).

    Article  CAS  Google Scholar 

  7. McQueen, K.L. & Parham, P. Variable receptors controlling activation and inhibition of NK cells. Curr. Opin. Immunol. 14, 615–621 (2002).

    Article  CAS  Google Scholar 

  8. Yokoyama, W.M. & Plougastel, B.F. Immune functions encoded by the natural killer gene complex. Nat. Rev. Immunol. 3, 304–316 (2003).

    Article  CAS  Google Scholar 

  9. Trowsdale, J. Genetic and functional relationships between MHC and NK receptor genes. Immunity 15, 363–374 (2001).

    Article  CAS  Google Scholar 

  10. Vitale, M. et al. Analysis of natural killer cells in TAP2-deficient patients: expression of functional triggering receptors and evidence for the existence of inhibitory receptor(s) that prevent lysis of normal autologous cells. Blood 99, 1723–1729 (2002).

    Article  CAS  Google Scholar 

  11. Plougastel, B., Matsumoto, K., Dubbelde, C. & Yokoyama, W.M. Analysis of a 1-Mb BAC contig overlapping the mouse Nkrp1 cluster of genes: cloning of three new Nkrp1 members, Nkrp1d, Nkrp1e, and Nkrp1f. Immunogenetics 53, 592–598 (2001).

    Article  CAS  Google Scholar 

  12. Chambers, W.H. et al. Monoclonal antibody to a triggering structure expressed on rat natural killer cells and adherent lymphokine-activated killer cells. J. Exp. Med. 169, 1373–1789 (1989).

    Article  CAS  Google Scholar 

  13. Giorda, R. et al. NKR-P1, a signal transduction molecule on natural killer cells. Science 249, 1298–1300 (1990).

    Article  CAS  Google Scholar 

  14. Lanier, L.L., Chang, C. & Phillips, J.H. Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J. Immunol. 153, 2417–2428 (1994).

    CAS  PubMed  Google Scholar 

  15. Karlhofer, F.M. & Yokoyama, W.M. Stimulation of murine natural killer (NK) cells by a monoclonal antibody specific for the NK1.1 antigen. IL-2-activated NK cells possess additional specific stimulation pathways. J. Immunol. 146, 3662–3673 (1991).

    CAS  PubMed  Google Scholar 

  16. Hackett, J., Jr. et al. Origin and differentiation of natural killer cells. II. Functional and morphologic studies of purified NK-1.1+ cells. J. Immunol. 136, 3124–3131 (1986).

    PubMed  Google Scholar 

  17. Bendelac, A. Mouse NK1+ T cells. Curr. Opin. Immunol. 7, 367–374 (1995).

    Article  CAS  Google Scholar 

  18. Bezouska, K. et al. Oligosaccharide ligands for NKR-P1 protein activate NK cells and cytotoxicity. Nature 372, 150–157 (1994).

    Article  CAS  Google Scholar 

  19. Weis, W.I., Taylor, M.E. & Drickamer, K. The C-type lectin superfamily in the immune system. Immunol. Rev. 163, 19–34 (1998).

    Article  CAS  Google Scholar 

  20. Burnet, F.M. Self-recognition in colonial marine forms and flowering plants in relation to evolution of immunity. Nature 232, 230–235 (1971).

    Article  CAS  Google Scholar 

  21. Furukawa, H., Iizuka, K., Poursine-Laurent, J., Shastri, N. & Yokoyama, W.M. A ligand for the murine NK activation receptor Ly-49D: activation of tolerized NK cells from b2-microglobulin-deficient mice. J. Immunol. 169, 126–136 (2002).

    Article  CAS  Google Scholar 

  22. Sanderson, S. & Shastri, N. LacZ inducible, antigen/MHC-specific T cell hybrids. Int. Immunol. 6, 369–376 (1994).

    Article  CAS  Google Scholar 

  23. Smith, H.R. et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl. Acad. Sci. USA 99, 8826–8831 (2002).

    Article  CAS  Google Scholar 

  24. Arase, H., Mocarski, E.S., Campbell, A.E., Hill, A.B. & Lanier, L.L. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1323–1326 (2002).

    Article  CAS  Google Scholar 

  25. Plougastel, B., Dubbelde, C. & Yokoyama, W.M. Cloning of Clr, a new family of lectin-like genes localized between mouse Nkrp1a and Cd69 genes. Immunogenetics 53, 209–214 (2001).

    Article  CAS  Google Scholar 

  26. Liao, N.S., Bix, M., Zijlstra, M., Jaenisch, R. & Raulet, D. MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity. Science 253, 199–202 (1991).

    Article  CAS  Google Scholar 

  27. Zhou, H. et al. A novel osteoblast-derived c-type lectin that inhibits osteoclast formation. J. Biol. Chem. 276, 14916–14923 (2001).

    Article  CAS  Google Scholar 

  28. Yokoyama, W.M. Recognition structures on natural killer cells. Curr. Opin. Immunol. 5, 67–73 (1993).

    Article  CAS  Google Scholar 

  29. Lanier, L.L. NK cell receptors. Annu. Rev. Immunol. 16, 359–393 (1998).

    Article  CAS  Google Scholar 

  30. Zitvogel, L. Dendritic and natural killer cells cooperate in the control/switch of innate immunity. J. Exp. Med. 195, F9–14 (2002).

    Article  CAS  Google Scholar 

  31. Raulet, D.H., Vance, R.E. & McMahon, C.W. Regulation of the natural killer cell receptor repertoire. Annu. Rev. Immunol. 19, 291–330 (2001).

    Article  CAS  Google Scholar 

  32. Brown, M.G. et al. Natural killer gene complex (Nkc) allelic variability in inbred mice: evidence for Nkc haplotypes. Immunogenetics 53, 584–591 (2001).

    Article  CAS  Google Scholar 

  33. Makrigiannis, A.P. et al. A BAC contig map of the Ly49 gene cluster in 129 mice reveals extensive differences in gene content relative to C57BL/6 mice. Genomics 79, 437–444 (2002).

    Article  CAS  Google Scholar 

  34. Wilhelm, B.T., Gagnier, L. & Mager, D.L. Sequence analysis of the ly49 cluster in C57BL/6 mice: a rapidly evolving multigene family in the immune system. Genomics 80, 646–661 (2002).

    Article  CAS  Google Scholar 

  35. Mehta, I.K., Smith, H.R.C., Wang, J., Margulies, D.H. & Yokoyama, W.M. A “chimeric” C57L-derived Ly49 inhibitory receptor resembling the Ly49D activation receptor. Cell. Immunol. 209, 29–41 (2000).

    Article  Google Scholar 

  36. Mehta, I.K., Wang, J., Roland, J., Margulies, D.H. & Yokoyama, W.M. Ly49A allelic variation and MHC class I specificity. Immunogenetics 53, 572–583 (2001).

    Article  CAS  Google Scholar 

  37. Depatie, C., Muise, E., Lepage, P., Gros, P. & Vidal, S.M. High-resolution linkage map in the proximity of the host resistance locus CMV1. Genomics 39, 154–163 (1997).

    Article  CAS  Google Scholar 

  38. Forbes, C.A. et al. The Cmv1 host resistance locus is closely linked to the Ly49 multigene family within the natural killer cell gene complex on mouse chromosome 6. Genomics 41, 406–413 (1997).

    Article  CAS  Google Scholar 

  39. Nasrallah, J.B. Recognition and rejection of self in plant reproduction. Science 296, 305–308 (2002).

    Article  CAS  Google Scholar 

  40. Ferris, P.J., Armbrust, E.V. & Goodenough, U.W. Genetic structure of the mating-type locus of Chlamydomonas reinhardtii. Genetics 160, 181–200 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaufman, J. et al. The chicken B locus is a minimal essential major histocompatibility complex. Nature 401, 923–925 (1999).

    Article  CAS  Google Scholar 

  42. Kitamura, T. et al. Efficient screening of retroviral cDNA expression libraries. Proc. Natl. Acad. Sci. USA 92, 9146–9150 (1995).

    Article  CAS  Google Scholar 

  43. Idris, A.H. et al. The natural killer cell complex genetic locus, Chok, encodes Ly49D, a target recognition receptor that activates natural killing. Proc. Natl. Acad. Sci. USA 96, 6330–6305 (1999).

    Article  CAS  Google Scholar 

  44. Sambrook, J. & Russell, D. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001).

    Google Scholar 

  45. Felsenstein, J. PHYLIP-Phylogeny inference package (version 3.2). Cladistics 5, 164–166 (1989).

    Google Scholar 

  46. Waterston, R.H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Laurent, E. Blattenberger and L. Yang for technical support, J. Nasrallah (Cornell University) for discussions, and E. Unanue, M. Colonna, T. Hansen and A. French for comments on the manuscript. Work in the Yokoyama laboratory is supported by the Howard Hughes Medical Institute, the Barnes-Jewish Hospital Foundation and grants from the National Institutes of Health. The Burroughs-Wellcome Fund, Kilo Foundation and National Institutes of Health support work in the Fremont laboratory. O.V.N. is supported by a Cancer Research Institute postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne M Yokoyama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1.

Minimal allelic polymorphism of Clr and Nkrp1 between C57BL/6 and 129 mouse strains. (a) Identity of Clr sequences from C57BL/6 (B6) and 129 mice. Amino acid alignments of the B6 (Clrb: NP_444339; Clrg: NP_064653) and 129 alleles from Genbank and Celera databases, respectively, were performed using the BLAST algorithm. The contact residues (specificity determinants) as ascertained by the crystal structure of the Nkrp1f-Clrg complex are indicated by the asterisks. The “V” indicates the start of the Clrg molecule used in the crystallization studies. Note that the Clrb and Clrg sequences are identical. (b) Minimal polymorphism of Nkrp1 molecules from B6 and 129 mice. Amino acid alignment of Nkrp1d and Nkrp1f from B6 and 129 strain mice. Amino acid alignments of the B6 (Nkrp1d, GenBank accession number NP_0750599; Nkrp1f, Genbank NP_694734) and 129 alleles from Genbank and Celera databases, respectively, were performed using the BLAST algorithm. The contact residues (specificity determinants) as ascertained by the crystal structure of the Nkrp1f-Clrg complex are indicated by the asterisks. The “V” indicates the start of the Nkrp1f molecule used in the crystallization studies. Note that the Nkrp1f sequences are identical and that none of the predicted contact sites for Nkrp1d is a polymorphic residue. (PDF 40 kb)

Supplementary Fig. 2.

Specificity of mAb 2D12 for Nkrp1d. Reporter cells for Nkrp1a, Nkrp1c, Nkrp1d or Nkrp1f were produced by retroviral transduction of chimeric molecules containing Nkrp1 ectodomains, Ly49a transmembrane, and CD3z cytoplasmic domains, as indicated. The retroviral expression vectors contained GFP in the second cistron. GFP-positive cells were sorted to uniformity, then were mixed with untransduced BWZ.36 parental cells for staining with 2D12 mAb followed by PE-conjugated goat anti-mouse IgG antibody. Cells were then analyzed with FACS. (PDF 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iizuka, K., Naidenko, O., Plougastel, B. et al. Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nat Immunol 4, 801–807 (2003). https://doi.org/10.1038/ni954

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni954

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing