Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ERM proteins regulate cytoskeleton relaxation promoting T cell–APC conjugation

This article has been updated

Abstract

During activation, T cells associate with antigen-presenting cells, a dynamic process that involves the formation of a broad area of intimate membrane contact known as the immunological synapse. The molecular intermediates that link initial antigen recognition to the cytoskeletal changes involved in this phenomenon have not yet been defined. Here we demonstrate that ezrin-radixin-moesin proteins are rapidly inactivated after antigen recognition through a Vav1-Rac1 pathway. The resulting disanchoring of the cortical actin cytoskeleton from the plasma membrane decreased cellular rigidity, leading to more efficient T cell–antigen-presenting cell conjugate formation. These findings identify an antigen-dependent molecular pathway that favors immunological synapse formation and the subsequent development of an effective immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human PBT activation results in ERM dephosphorylation.
Figure 2: Effect of Rho GTPases on the phosphorylation of the ERM proteins in human PBTs.
Figure 3: ERM inactivation is Pak1 independent.
Figure 4: Analysis of TCR-mediated ERM inactivation in T lymphocytes from Vav1-deficient mice.
Figure 5: Effect of ERM dominant negative expression on endogenous ERM proteins and the cortical actin cytoskeleton.
Figure 6: Analysis of cellular rigidity.
Figure 7: Effect of (FERM)Ez and Rac1L61 expression on T cell–APC conjugate formation.

Similar content being viewed by others

Change history

  • 09 February 2004

    appended aop PDF with erratum PDF (will be corrected for print issue), and placed footnote in SGML at all occurrences of Figure 2

References

  1. Bromley, S.K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375–396 (2001).

    Article  CAS  Google Scholar 

  2. Lanzavecchia, A. & Sallusto, F. Antigen decoding by T lymphocytes: from synapses to fate determination. Nat. Immunol. 2, 487–492 (2001).

    Article  CAS  Google Scholar 

  3. Delon, J., Stoll, S. & Germain, R.N. Imaging of T-cell interactions with antigen presenting cells in culture and in intact lymphoid tissue. Immunol. Rev. 189, 51–63 (2002).

    Article  CAS  Google Scholar 

  4. Huppa, J.B. & Davis, M.M. T-cell-antigen recognition and the immunological synapse. Nat. Rev. Immunol. 3, 973–983 (2003).

    Article  CAS  Google Scholar 

  5. Trautmann, A. & Valitutti, S. The diversity of immunological synapses. Curr. Opin. Immunol. 15, 249–254 (2003).

    Article  CAS  Google Scholar 

  6. Dustin, M.L., Bromley, S.K., Kan, Z., Peterson, D.A. & Unanue, E.R. Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc. Natl. Acad. Sci. USA 94, 3909–3913 (1997).

    Article  CAS  Google Scholar 

  7. Delon, J., Bercovici, N., Liblau, R. & Trautmann, A. Imaging antigen recognition by naive CD4+ T cells: compulsory cytoskeletal alterations for the triggering of an intracellular calcium response. Eur. J. Immunol. 28, 716–729 (1998).

    Article  CAS  Google Scholar 

  8. Stoll, S., Delon, J., Brotz, T.M. & Germain, R.N. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002).

    Article  Google Scholar 

  9. Donnadieu, E., Bismuth, G. & Trautmann, A. Antigen recognition by helper T cells elicits a sequence of distinct changes of their shape and intracellular calcium. Curr. Biol. 4, 584–595 (1994).

    Article  CAS  Google Scholar 

  10. Negulescu, P.A., Krasieva, T.B., Khan, A., Kerschbaum, H.H. & Cahalan, M.D. Polarity of T cell shape, motility, and sensitivity to antigen. Immunity 4, 421–430 (1996).

    Article  CAS  Google Scholar 

  11. Wülfing, C., Sjaastad, M.D. & Davis, M.M. Visualizing the dynamics of T cell activation: intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc. Natl. Acad. Sci. USA 95, 6302–6307 (1998).

    Article  Google Scholar 

  12. Delon, J., Bercovici, N., Raposo, G., Liblau, R. & Trautmann, A. Antigen-dependent and -independent Ca2+ responses triggered in T cells by dendritic cells compared with B cells. J. Exp. Med. 188, 1473–1484 (1998).

    Article  CAS  Google Scholar 

  13. Valitutti, S., Dessing, M., Aktories, K., Gallati, H. & Lanzavecchia, A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J. Exp. Med. 181, 577–584 (1995).

    Article  CAS  Google Scholar 

  14. Dustin, M.L. & Cooper, J.A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat. Immunol. 1, 23–29 (2000).

    Article  CAS  Google Scholar 

  15. Sancho, D. et al. Regulation of microtubule-organizing center orientation and actomyosin cytoskeleton rearrangement during immune interactions. Immunol. Rev. 189, 84–97 (2002).

    Article  CAS  Google Scholar 

  16. Fuller, C.L., Braciale, V.L. & Samelson, L.E. All roads lead to actin: the intimate relationship between TCR signaling and the cytoskeleton. Immunol. Rev. 191, 220–236 (2003).

    Article  CAS  Google Scholar 

  17. Allenspach, E.J. et al. ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity 15, 739–750 (2001).

    Article  CAS  Google Scholar 

  18. Delon, J., Kaibuchi, K. & Germain, R.N. Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin. Immunity 15, 691–701 (2001).

    Article  CAS  Google Scholar 

  19. Roumier, A. et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity 15, 715–728 (2001).

    Article  CAS  Google Scholar 

  20. Bretscher, A., Edwards, K. & Fehon, R.G. ERM proteins and merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell Biol. 3, 586–599 (2002).

    Article  CAS  Google Scholar 

  21. Gautreau, A., Louvard, D. & Arpin, M. ERM proteins and NF2 tumor suppressor: the Yin and Yang of cortical actin organization and cell growth signaling. Curr. Opin. Cell Biol. 14, 104–109 (2002).

    Article  CAS  Google Scholar 

  22. Ridley, A.J. Rho family proteins: coordinating cell responses. Trends Cell Biol. 11, 471–477 (2001).

    Article  CAS  Google Scholar 

  23. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  Google Scholar 

  24. Cantrell, D.A. GTPases and T cell activation. Immunol. Rev. 192, 122–130 (2003).

    Article  CAS  Google Scholar 

  25. Shcherbina, A., Bretscher, A., Kenney, D.M. & Remold-O'Donnell, E. Moesin, the major ERM protein of lymphocytes and platelets, differs from ezrin in its insensitivity to calpain. FEBS Lett. 443, 31–36 (1999).

    Article  CAS  Google Scholar 

  26. Pietromonaco, S.F., Simons, P.C., Altman, A. & Elias, L. Protein kinase C-θ phosphorylation of moesin in the actin-binding sequence. J. Biol. Chem. 273, 7594–7603 (1998).

    Article  CAS  Google Scholar 

  27. Nobes, C.D., Hawkins, P., Stephens, L. & Hall, A. Activation of the small GTP-binding proteins rho and rac by growth factor receptors. J. Cell Sci. 108, 225–233 (1995).

    CAS  PubMed  Google Scholar 

  28. Matsui, T., Yonemura, S. & Tsukita, S. Activation of ERM proteins in vivo by Rho involves phosphatidyl-inositol 4-phosphate 5-kinase and not ROCK kinases. Curr. Biol. 9, 1259–1262 (1999).

    Article  CAS  Google Scholar 

  29. Salazar-Fontana, L.I., Barr, V., Samelson, L.E. & Bierer, B.E. CD28 engagement promotes actin polymerization through the activation of the small Rho GTPase Cdc42 in human T cells. J. Immunol. 171, 2225–2232 (2003).

    Article  CAS  Google Scholar 

  30. Aspenstrom, P. Effectors for the Rho GTPases. Curr. Opin. Cell Biol. 11, 95–102 (1999).

    Article  CAS  Google Scholar 

  31. Lamarche, N. et al. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87, 519–529 (1996).

    Article  CAS  Google Scholar 

  32. Gomez, M., Kioussis, D. & Cantrell, D.A. The GTPase Rac-1 controls cell fate in the thymus by diverting thymocytes from positive to negative selection. Immunity 15, 703–713 (2001).

    Article  CAS  Google Scholar 

  33. Turner, M. & Billadeau, D.D. VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Nat. Rev. Immunol. 2, 476–486 (2002).

    Article  CAS  Google Scholar 

  34. Tybulewicz, V.L., Ardouin, L., Prisco, A. & Reynolds, L.F. Vav1: a key signal transducer downstream of the TCR. Immunol. Rev. 192, 42–52 (2003).

    Article  CAS  Google Scholar 

  35. Reynolds, L.F. et al. Vav1 transduces T cell receptor signals to the activation of phospholipase C-γ1 via phosphoinositide 3-kinase-dependent and -independent pathways. J. Exp. Med. 195, 1103–1114 (2002).

    Article  CAS  Google Scholar 

  36. Fischer, K.-D. et al. Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr. Biol. 8, 554–562 (1998).

    Article  CAS  Google Scholar 

  37. Holsinger, L.J. et al. Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr. Biol. 8, 563–572 (1998).

    Article  CAS  Google Scholar 

  38. Costello, P.S. et al. The Rho-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NF-kB pathways. Proc. Natl. Acad. Sci. USA 96, 3035–3040 (1999).

    Article  CAS  Google Scholar 

  39. Brown, M.J. et al. Chemokine stimulation of human peripheral blood T lymphocytes induces rapid dephosphorylation of ERM proteins, which facilitates loss of microvilli and polarization. Blood 102, 3890–3899 (2003).

    Article  CAS  Google Scholar 

  40. Crepaldi, T., Gautreau, A., Comoglio, P.M., Louvard, D. & Arpin, M. Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J. Cell Biol. 138, 423–434 (1997).

    Article  CAS  Google Scholar 

  41. Amieva, M.R., Litman, P., Huang, L., Ichimaru, E. & Furthmayr, H. Disruption of dynamic cell surface architecture of NIH3T3 fibroblasts by the N-terminal domains of moesin and ezrin: in vivo imaging with GFP fusion proteins. J. Cell Sci. 112, 111–125 (1999).

    CAS  PubMed  Google Scholar 

  42. Yoshinaga-Ohara, N., Takahashi, A., Uchiyama, T. & Sasada, M. Spatiotemporal regulation of moesin phosphorylation and rear release by Rho and serine/threonine phosphatase during neutrophil migration. Exp. Cell Res. 278, 112–122 (2002).

    Article  CAS  Google Scholar 

  43. Kondo, T. et al. ERM (ezrin/radixin/moesin)-based molecular mechanism of microvillar breakdown at an early stage of apoptosis. J. Cell Biol. 139, 749–758 (1997).

    Article  CAS  Google Scholar 

  44. Stefanova, I., Dorfman, J.R. & Germain, R.N. Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 420, 429–434 (2002).

    Article  CAS  Google Scholar 

  45. Krawczyk, C. et al. Vav1 controls integrin clustering and MHC/peptide-specific cell adhesion to antigen-presenting cells. Immunity 16, 331–343 (2002).

    Article  CAS  Google Scholar 

  46. Ardouin, L. et al. Vav1 transduces TCR signals required for LFA-1 function and cell polarization at the immunological synapse. Eur. J. Immunol. 33, 790–797 (2003).

    Article  CAS  Google Scholar 

  47. Qi, S.Y., Groves, J.T. & Chakraborty, A.K. Synaptic pattern formation during cellular recognition. Proc. Natl. Acad. Sci. USA 98, 6548–6553 (2001).

    Article  CAS  Google Scholar 

  48. Lee, S.J., Hori, Y., Groves, J.T., Dustin, M.L. & Chakraborty, A.K. The synapse assembly model. Trends Immunol. 23, 500–502 (2002).

    Article  CAS  Google Scholar 

  49. Wülfing, C. et al. Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat. Immunol. 3, 42–47 (2002).

    Article  Google Scholar 

  50. Turner, M. et al. A requirement for the Rho-family GTP exchange factor Vav in positive and negative selection of thymocytes. Immunity 7, 451–460 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.K. Burkhardt, N. Hotchin and A. Hall for providing us with constructs; and S. Shaw, C. Randriamampita and E. Donnadieu for critical reading of the manuscript and suggestions. Supported by Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Ligue Nationale contre le Cancer, Région Ile-de-France and Association Claude Bernard (M.S.).

*Note: In the version of this article originally published online, the labeling of the last two lanes in Figure 2a was incorrect. They should read "GFP-Rac1L61" and "GFP-Cdc42L61." This error has been corrected for the HTML and print versions of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Delon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faure, S., Salazar-Fontana, L., Semichon, M. et al. ERM proteins regulate cytoskeleton relaxation promoting T cell–APC conjugation. Nat Immunol 5, 272–279 (2004). https://doi.org/10.1038/ni1039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1039

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing