Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The evolution of innate lymphoid cells

Abstract

Innate lymphoid cells (ILCs) are the most recently discovered group of immune cells. Understanding their biology poses many challenges. We discuss here the current knowledge on the appearance of ILC subsets during evolution and propose how the connection between ILCs and T cells contributes to the robustness of immunity and hence to the fitness of the hosts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differentiation and evolution of ILCs.
Figure 2: Phylogeny of ILC signature genes.
Figure 3: Innate and adaptive lymphocytes exhibit both complementarity and redundancy in immunity.

Similar content being viewed by others

References

  1. Andral, G. (ed). Essai d'Hématologie Pathologique Fortin. (Masson & Cie, Paris, 1843).

  2. Addison, W. Experimental and Practical Researches on the Blood: Second Series. Prov. Med. J. Retrosp. Med. Sci. 6, 444–445 (1843).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ehrlich, P. Arch. Anat. Physiol. 3, 571–579 (1879).

    Google Scholar 

  4. Warner, N.L., Szenberg, A. & Burnet, F.M. The immunological role of different lymphoid organs in the chicken. I. Dissociation of immunological responsiveness. Aust. J. Exp. Biol. Med. Sci. 40, 373–387 (1962).

    Article  CAS  PubMed  Google Scholar 

  5. Cooper, M.D., Peterson, R.D. & Good, R.A. Delineation of the thymic and bursal lymphoid systems in the chicken. Nature 205, 143–146 (1965).

    Article  CAS  PubMed  Google Scholar 

  6. DiGeorge, A.M. Congenital absence of the thymus and its immunologic consequences: Concurrence with congenital hypoparathyroidism. Birth Defects Orig. Artic. Ser. 4, 116–121 (1968).

    Google Scholar 

  7. Nossal, G.J., Cunningham, A., Mitchell, G.F. & Miller, J.F. Cell to cell interaction in the immune response. 3. Chromosomal marker analysis of single antibody-forming cells in reconstituted, irradiated, or thymectomized mice. J. Exp. Med. 128, 839–853 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kiessling, R., Klein, E. & Wigzell, H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol. 5, 112–117 (1975).

    Article  CAS  PubMed  Google Scholar 

  9. Herberman, R.B., Nunn, M.E. & Lavrin, D.H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int. J. Cancer 16, 216–229 (1975).

    Article  CAS  PubMed  Google Scholar 

  10. Mebius, R.E., Rennert, P. & Weissman, I.L. Developing lymph nodes collect CD4+CD3 LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7, 493–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Spits, H. et al. Innate lymphoid cells--a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Artis, D. & Spits, H. The biology of innate lymphoid cells. Nature 517, 293–301 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Eberl, G., Colonna, M., Di Santo, J.P. & McKenzie, A.N. Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science 348, aaa6566 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Monahan-Earley, R., Dvorak, A.M. & Aird, W.C. Evolutionary origins of the blood vascular system and endothelium. J. Thromb. Haemost. 11, 46–66 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hirano, M. et al. Evolutionary implications of a third lymphocyte lineage in lampreys. Nature 501, 435–438 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pancer, Z. & Cooper, M.D. The evolution of adaptive immunity. Annu. Rev. Immunol. 24, 497–518 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoder, J.A. & Litman, G.W. The phylogenetic origins of natural killer receptors and recognition: relationships, possibilities, and realities. Immunogenetics 63, 123–141 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Parrinello, N. Cytotoxic activity of tunicate hemocytes. Prog. Mol. Subcell. Biol. 15, 190–217 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. van de Pavert, S.A. & Vivier, E. Differentiation and function of group 3 innate lymphoid cells, from embryo to adult. Int. Immunol. 28, 35–42 (2016).

    CAS  PubMed  Google Scholar 

  21. Ishizuka, I.E. et al. Single-cell analysis defines the divergence between the innate lymphoid cell lineage and lymphoid tissue-inducer cell lineage. Nat. Immunol. 17, 269–276 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van de Pavert, S.A. & Mebius, R.E. New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 10, 664–674 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Boehm, T., Hess, I. & Swann, J.B. Evolution of lymphoid tissues. Trends Immunol. 33, 315–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Igawa, D., Sakai, M. & Savan, R. An unexpected discovery of two interferon gamma-like genes along with interleukin (IL)-22 and -26 from teleost: IL-22 and -26 genes have been described for the first time outside mammals. Mol. Immunol. 43, 999–1009 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Lane, P.J. et al. Lymphoid tissue inducer cells: bridges between the ancient innate and the modern adaptive immune systems. Mucosal Immunol. 2, 472–477 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Vondenhoff, M.F. et al. Separation of splenic red and white pulp occurs before birth in a LTαβ-independent manner. J. Leukoc. Biol. 84, 152–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Delconte, R.B. et al. The helix-loop-helix protein ID2 governs NK cell fate by tuning their sensitivity to interleukin-15. Immunity 44, 103–115 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Constantinides, M.G., McDonald, B.D., Verhoef, P.A. & Bendelac, A. A committed precursor to innate lymphoid cells. Nature 508, 397–401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klose, C.S. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Robinette, M.L. et al. Immunological Genome Consortium. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat. Immunol. 16, 306–317 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fischer, A. Human primary immunodeficiency diseases. Immunity 27, 835–845 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Rankin, L.C. et al. The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat. Immunol. 14, 389–395 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rankin, L.C. et al. Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nat. Immunol. 17, 179–186 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Song, C. et al. Unique and redundant functions of NKp46+ ILC3s in models of intestinal inflammation. J. Exp. Med. 212, 1869–1882 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nish, S. & Medzhitov, R. Host defense pathways: role of redundancy and compensation in infectious disease phenotypes. Immunity 34, 629–636 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tait Wojno, E.D. & Artis, D. Innate lymphoid cells: balancing immunity, inflammation, and tissue repair in the intestine. Cell Host Microbe 12, 445–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Villanova, F. et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J. Invest. Dermatol. 134, 984–991 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Scanlon, S.T. & McKenzie, A.N. Type 2 innate lymphoid cells: new players in asthma and allergy. Curr. Opin. Immunol. 24, 707–712 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Kløverpris, H.N. et al. Innate lymphoid cells are depleted irreversibly during acute HIV-1 infection in the absence of viral suppression. Immunity 44, 391–405 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Basu, R. et al. Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity 37, 1061–1075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bouchery, T. et al. ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nat. Commun. 6, 6970 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Sonnenberg, G.F. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336, 1321–1325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hepworth, M.R. et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science 348, 1031–1035 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343, 1249288 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hanash, A.M. et al. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity 37, 339–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kruglov, A.A. et al. Nonredundant function of soluble LTα3 produced by innate lymphoid cells in intestinal homeostasis. Science 342, 1243–1246 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Eken, A., Singh, A.K., Treuting, P.M. & Oukka, M. IL-23R+ innate lymphoid cells induce colitis via interleukin-22-dependent mechanism. Mucosal Immunol. 7, 143–154 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Carpentier and N. Thakur for comparative transcriptomic analysis; and P. Golstein, Y. Kerdiles and R. Golub for critical reading and advice. Supported by the European Research Council (THINK Advanced Grant; Vivier laboratory), the Ligue Nationale contre le Cancer (Equipe Labellisée; Vivier laboratory), INSERM (Vivier and Van de Pavert laboratories), CNRS (Vivier and Van de Pavert laboratories), Aix-Marseille University (to Centre d'Immunologie de Marseille-Luminy; Vivier and Van de Pavert laboratories), the Institut Universitaire de France (E.V.), A*MIDEX (Van de Pavert laboratory), Fondation pour la Recherche Médicale (AJE20150633331; Van de Pavert laboratory), Agence Nationale de Recherche (Immunodev; Van de Pavert laboratory), the National Institute of Allergy and Infectious Diseases and the National Institute of General Medical Sciences of the US National Institutes of Health (Cooper laboratory), the National Health and Medical Research Council of Australia (Belz laboratory), the Victorian State Government Operational Infrastructure Support (Belz laboratory), the Australian Government National Health and Medical Research Council of Australia Independent Research Institutes Infrastructure Support Scheme (Belz laboratory) and the Australian Research Council (Belz laboratory).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eric Vivier or Gabrielle T Belz.

Ethics declarations

Competing interests

E.V. is the cofounder of and a shareholder in Innate Pharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivier, E., van de Pavert, S., Cooper, M. et al. The evolution of innate lymphoid cells. Nat Immunol 17, 790–794 (2016). https://doi.org/10.1038/ni.3459

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3459

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing