Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response

Abstract

The induction of type I interferons by the bacterial secondary messengers cyclic di-GMP (c-di-GMP) or cyclic di-AMP (c-di-AMP) is dependent on a signaling axis that involves the adaptor STING, the kinase TBK1 and the transcription factor IRF3. Here we identified the heliase DDX41 as a pattern-recognition receptor (PRR) that sensed both c-di-GMP and c-di-AMP. DDX41 specifically and directly interacted with c-di-GMP. Knockdown of DDX41 via short hairpin RNA in mouse or human cells inhibited the induction of genes encoding molecules involved in the innate immune response and resulted in defective activation of STING, TBK1 and IRF3 in response to c-di-GMP or c-di-AMP. Our results suggest a mechanism whereby c-di-GMP and c-di-AMP are detected by DDX41, which forms a complex with STING to signal to TBK1-IRF3 and activate the interferon response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The c-di-GMP- and c-di-AMP-mediated induction of the innate immune response in mouse DCs and human monocytes requires DDX41.
Figure 2: Cyclic dinucleotides activate interferon via DDX41 in primary cells.
Figure 3: DDX41 is a direct sensor of c-di-GMP.
Figure 4: The DDX41 DEAD-box domain is required for c-di-GMP- and c-di-AMP-mediated induction of IFN-β.
Figure 5: Both c-di-GMP and c-di-AMP require DDX41 for STING-dependent signaling.
Figure 6: The binding affinity of c-di-GMP for DDX41 is greater than that of c-di-GMP for STING.
Figure 7: DDX41 is required for the downstream association of c-di-GMP with STING.

Similar content being viewed by others

References

  1. McCoy, C.E. & O'Neill, L.A. The role of toll-like receptors in macrophages. Front. Biosci. 13, 62–70 (2008).

    Article  CAS  Google Scholar 

  2. Plüddemann, A., Mukhopadhyay, S. & Gordon, S. Innate immunity to intracellular pathogens: macrophage receptors and responses to microbial entry. Immunol. Rev. 240, 11–24 (2011).

    Article  Google Scholar 

  3. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    Article  CAS  Google Scholar 

  4. Mills, E., Pultz, I.S., Kulasekara, H.D. & Miller, S.I. The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell. Microbiol. 13, 1122–1129 (2011).

    Article  CAS  Google Scholar 

  5. Hengge, R. Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microbiol. 7, 263–273 (2009).

    Article  CAS  Google Scholar 

  6. Pesavento, C. & Hengge, R. Bacterial nucleotide-based second messengers. Curr. Opin. Microbiol. 12, 170–176 (2009).

    Article  CAS  Google Scholar 

  7. Hengge, R. Cyclic-di-GMP reaches out into the bacterial RNA world. Sci. Signal. 3, pe44 (2010).

    Article  CAS  Google Scholar 

  8. Woodward, J.J., Iavarone, A.T. & Portnoy, D.A. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328, 1703–1705 (2010).

    Article  CAS  Google Scholar 

  9. McWhirter, S.M. et al. A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. J. Exp. Med. 206, 1899–1911 (2009).

    Article  CAS  Google Scholar 

  10. Jin, L. et al. MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. J. Immunol. 187, 2595–2601 (2011).

    Article  CAS  Google Scholar 

  11. Sauer, J.D. et al. The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect. Immun. 79, 688–694 (2011).

    Article  CAS  Google Scholar 

  12. Ishikawa, H. & Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    Article  CAS  Google Scholar 

  13. Zhong, B. et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29, 538–550 (2008).

    Article  CAS  Google Scholar 

  14. Sun, W. et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl. Acad. Sci. USA 106, 8653–8658 (2009).

    Article  CAS  Google Scholar 

  15. Kumar, H., Kawai, T. & Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 30, 16–34 (2011).

    Article  CAS  Google Scholar 

  16. Hayden, M.S. & Ghosh, S. NF-κB in immunobiology. Cell Res. 21, 223–244 (2011).

    Article  CAS  Google Scholar 

  17. Zhang, Z. et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12, 959–965 (2011).

    Article  CAS  Google Scholar 

  18. Ishikawa, H., Ma, Z. & Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    Article  CAS  Google Scholar 

  19. Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl. Acad. Sci. USA 106, 20842–20846 (2009).

    Article  CAS  Google Scholar 

  20. Burdette, D.L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011).

    Article  CAS  Google Scholar 

  21. Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11, 997–1004 (2010).

    Article  CAS  Google Scholar 

  22. Stein, S.C. & Falck-Pedersen, E. Sensing adenovirus infection: activation of interferon regulatory factor 3 in RAW 264.7 cells. J. Virol. 86, 4527–4537 (2012).

    Article  CAS  Google Scholar 

  23. Tanaka, Y. & Chen, Z.J. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal. 5, ra20 (2012).

    Article  Google Scholar 

  24. Ouyang, S. et al. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity 36, 1073–1086 (2012).

    Article  CAS  Google Scholar 

  25. Yin, Q. et al. Cyclic di-GMP sensing via the innate immune signaling protein STING. Mol. Cell 46, 735–745 (2012).

    Article  CAS  Google Scholar 

  26. Shang, G. et al. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat. Struct. Mol. Biol. 19, 725–727 (2012).

    Article  CAS  Google Scholar 

  27. Huang, Y.H., Liu, X.Y., Du, X.X., Jiang, Z.F. & Su, X.D. The structural basis for the sensing and binding of cyclic di-GMP by STING. Nat. Struct. Mol. Biol. 19, 728–730 (2012).

    Article  CAS  Google Scholar 

  28. Shu, C., Yi, G., Watts, T., Kao, C.C. & Li, P. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat. Struct. Mol. Biol. 19, 722–724 (2012).

    Article  CAS  Google Scholar 

  29. Perry, A.K., Chen, G., Zheng, D., Tang, H. & Cheng, G. The host type I interferon response to viral and bacterial infections. Cell Res. 15, 407–422 (2005).

    Article  CAS  Google Scholar 

  30. Ishii, K.J., Koyama, S., Nakagawa, A., Coban, C. & Akira, S. Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe 3, 352–363 (2008).

    Article  CAS  Google Scholar 

  31. Auerbuch, V., Brockstedt, D.G., Meyer-Morse, N., O'Riordan, M. & Portnoy, D.A. Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J. Exp. Med. 200, 527–533 (2004).

    Article  CAS  Google Scholar 

  32. Negishi, H. et al. Cross-interference of RLR and TLR signaling pathways modulates antibacterial T cell responses. Nat. Immunol. 13, 659–666 (2012).

    Article  CAS  Google Scholar 

  33. Brodsky, I.E. & Medzhitov, R. Targeting of immune signalling networks by bacterial pathogens. Nat. Cell Biol. 11, 521–526 (2009).

    Article  CAS  Google Scholar 

  34. Roy, C.R. & Mocarski, E.S. Pathogen subversion of cell-intrinsic innate immunity. Nat. Immunol. 8, 1179–1187 (2007).

    Article  CAS  Google Scholar 

  35. Hajishengallis, G. & Lambris, J.D. Microbial manipulation of receptor crosstalk in innate immunity. Nat. Rev. Immunol. 11, 187–200 (2011).

    Article  CAS  Google Scholar 

  36. Krutzik, S.R. et al. TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nat. Med. 11, 653–660 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Kelly-Scumpia for technical assistance; A. Dev for critical reading of the manuscript; and members of the Cheng and Modlin laboratories for discussion. Supported by the US National Institutes of Health (T32-AR058921 to K.P.; and P50 AR063020, R01 AI022553 and R01 AI073539, AI056154, AI067769, AI047868 and AR63020). Also supported in part by the Ministry of Science and Technology of China (2009DFB30310, 2013CB911103) and the National Natural Science Foundation of China (31070660, 31200559).

Author information

Authors and Affiliations

Authors

Contributions

K.P., Z.Z., R.L.M., Y.L. and G.C. designed the research; K.P. and Z.Z. did and analyzed the biochemical experiments; R.M.T. did the confocal imaging and analysis; S.O., Y.J. and Z.-J.L. did the cloning, expression and purification of DDX41 and the STING carboxy-terminal domain; S.S.I. prepared peritoneal macrophages; M.S. prepared PBMCs; S.A.Z. did and analyzed experiments with primary cells; S.Z. and W.Z. did and analyzed the affinity capillary electrophoresis binding affinity experiments; and K.P. wrote the manuscript.

Corresponding authors

Correspondence to Yong-jun Liu or Genhong Cheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 361 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvatiyar, K., Zhang, Z., Teles, R. et al. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol 13, 1155–1161 (2012). https://doi.org/10.1038/ni.2460

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2460

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing