Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

T-bet represses TH17 differentiation by preventing Runx1-mediated activation of the gene encoding RORγt

Abstract

Overactive responses by interleukin 17 (IL-17)-producing helper T cells (TH17 cells) are tightly linked to the development of autoimmunity, yet the factors that negatively regulate the differentiation of this lineage remain unknown. Here we report that the transcription factor T-bet suppressed development of the TH17 cell lineage by inhibiting transcription of Rorc (which encodes the transcription factor RORγt). T-bet interacted with the transcription factor Runx1, and this interaction blocked Runx1-mediated transactivation of Rorc. T-bet Tyr304 was required for formation of the T-bet–Runx1 complex, for blockade of Runx1 activity and for inhibition of the TH17 differentiation program. Our data reinforce the idea of master regulators that shape immune responses by simultaneously activating one genetic program while silencing the activity of competing regulators in a common progenitor cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T-bet deficiency promotes IL-17A production in vitro independently of IFN-γ.
Figure 2: T-bet deficiency promotes TH17 responses in the CNS during EAE.
Figure 3: T-bet expression in naive helper T cell precursors and fully differentiated TH17 cells inhibits the TH17 response.
Figure 4: T-bet blocks Runx1-mediated transactivation of the Rorc promoter.
Figure 5: Interaction of T-bet with Runx1.
Figure 6: Runx1 overexpression restores IL-17A production in TH17 cells expressing T-bet.
Figure 7: T-bet Tyr304 is essential for the interaction of T-bet with Runx1 and for inhibition of the TH17 differentiation program.

Similar content being viewed by others

References

  1. Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A. & Coffman, R.L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  Google Scholar 

  2. Aggarwal, S., Ghilardi, N., Xie, M.H., de Sauvage, F.J. & Gurney, A.L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    Article  CAS  Google Scholar 

  3. Harrington, L.E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  Google Scholar 

  4. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  Google Scholar 

  5. Mangan, P.R. et al. Transforming growth factor-β induces development of the T(H)17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  Google Scholar 

  6. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  7. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  Google Scholar 

  8. Liang, S.C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  Google Scholar 

  9. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  Google Scholar 

  10. Zhou, L. et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).

    CAS  Google Scholar 

  11. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  Google Scholar 

  12. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    Article  CAS  Google Scholar 

  13. McGeachy, M.J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. Immunol. 10, 314–324 (2009).

    Article  CAS  Google Scholar 

  14. Djuretic, I.M. et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat. Immunol. 8, 145–153 (2007).

    Article  CAS  Google Scholar 

  15. Hwang, E.S., Szabo, S.J., Schwartzberg, P.L. & Glimcher, L.H. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 307, 430–433 (2005).

    Article  CAS  Google Scholar 

  16. Burrell, B.E., Csencsits, K., Lu, G., Grabauskiene, S. & Bishop, D.K. CD8+ Th17 mediate costimulation blockade-resistant allograft rejection in T-bet-deficient mice. J. Immunol. 181, 3906–3914 (2008).

    Article  CAS  Google Scholar 

  17. Rangachari, M. et al. T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17. J. Exp. Med. 203, 2009–2019 (2006).

    Article  CAS  Google Scholar 

  18. Yuan, X. et al. A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. J. Exp. Med. 205, 3133–3144 (2008).

    Article  CAS  Google Scholar 

  19. Guo, S., Cobb, D. & Smeltz, R.B. T-bet inhibits the in vivo differentiation of parasite-specific CD4+ Th17 cells in a T cell-intrinsic manner. J. Immunol. 182, 6179–6186 (2009).

    Article  CAS  Google Scholar 

  20. Hegazy, A.N. et al. Interferons direct Th2 cell reprogramming to generate a stable GATA-3+T-bet+ cell subset with combined Th2 and Th1 cell functions. Immunity 32, 116–128 (2010).

    Article  CAS  Google Scholar 

  21. Lee, Y.K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009).

    Article  CAS  Google Scholar 

  22. Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  Google Scholar 

  23. Bettelli, E. et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J. Exp. Med. 200, 79–87 (2004).

    Article  CAS  Google Scholar 

  24. McGeachy, M.J. et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat. Immunol. 8, 1390–1397 (2007).

    Article  CAS  Google Scholar 

  25. Liu, X. et al. Crucial role of interleukin-7 in T helper type 17 survival and expansion in autoimmune disease. Nat. Med. 16, 191–197 (2010).

    Article  CAS  Google Scholar 

  26. Garrett, W.S. et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131, 33–45 (2007).

    Article  CAS  Google Scholar 

  27. Hwang, E.S., Hong, J.H. & Glimcher, L.H. IL-2 production in developing Th1 cells is regulated by heterodimerization of Re1A and T-bet and requires T-bet serine residue 508. J. Exp. Med. 202, 1289–1300 (2005).

    Article  CAS  Google Scholar 

  28. Abromson-Leeman, S., Bronson, R.T. & Dorf, M.E. Encephalitogenic T cells that stably express both T-bet and RORγt consistently produce IFNγ but have a spectrum of IL-17 profiles. J. Neuroimmunol. 215, 10–24 (2009).

    Article  CAS  Google Scholar 

  29. Mehta, D.S., Wurster, A.L., Weinmann, A.S. & Grusby, M.J. NFATc2 and T-bet contribute to T-helper-cell-subset-specific regulation of IL-21 expression. Proc. Natl. Acad. Sci. USA 102, 2016–2021 (2005).

    Article  CAS  Google Scholar 

  30. Zhang, F., Meng, G. & Strober, W. Interactions among the transcription factors Runx1, RORγt and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat. Immunol. 9, 1297–1306 (2008).

    Article  CAS  Google Scholar 

  31. Brustle, A. et al. The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nat. Immunol. 8, 958–966 (2007).

    Article  Google Scholar 

  32. Schraml, B.U. et al. The AP-1 transcription factor Batf controls TH17 differentiation. Nature 460, 405–409 (2009).

    Article  CAS  Google Scholar 

  33. Durant, L. et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 32, 605–615 (2010).

    Article  CAS  Google Scholar 

  34. Jenner, R.G. et al. The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes. Proc. Natl. Acad. Sci. USA 106, 17876–17881 (2009).

    Article  CAS  Google Scholar 

  35. Gocke, A.R. et al. T-bet regulates the fate of Th1 and Th17 lymphocytes in autoimmunity. J. Immunol. 178, 1341–1348 (2007).

    Article  CAS  Google Scholar 

  36. Yang, Y. et al. T-bet is essential for encephalitogenicity of both Th1 and Th17 cells. J. Exp. Med. 206, 1549–1564 (2009).

    Article  CAS  Google Scholar 

  37. Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

    Article  CAS  Google Scholar 

  38. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    Article  CAS  Google Scholar 

  39. Veldhoen, M., Hirota, K., Christensen, J., O′Garra, A. & Stockinger, B. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J. Exp. Med. 206, 43–49 (2009).

    Article  CAS  Google Scholar 

  40. Harris, T.J. et al. Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J. Immunol. 179, 4313–4317 (2007).

    Article  CAS  Google Scholar 

  41. Liu, X., Lee, Y.S., Yu, C.R. & Egwuagu, C.E. Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases. J. Immunol. 180, 6070–6076 (2008).

    Article  CAS  Google Scholar 

  42. Mathur, A.N. et al. Stat3 and Stat4 direct development of IL-17-secreting Th cells. J. Immunol. 178, 4901–4907 (2007).

    Article  CAS  Google Scholar 

  43. Mukasa, R. et al. Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity 32, 616–627 (2010).

    Article  CAS  Google Scholar 

  44. Bromberg, J.F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999).

    Article  CAS  Google Scholar 

  45. Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).

    Article  CAS  Google Scholar 

  46. Jones, D.C. et al. Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 312, 1223–1227 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Kozoriz for help in cell sorting; W. Strober (National Institute of Allergy and Infectious Diseases) for retroviral plasmids encoding Runx1 and dominant negative Runx1; S.L. Reiner (University of Pennsylvania) for mice with loxP-flanked Tbx21 alleles; C.B. Wilson (The Bill and Melinda Gates Foundation) for mice with expression of Cre recombinase driven by the Cd4 promoter; and A.-H. Lee, T. Staton-Winslow, M. Greenblatt and M. Wein for critical review of the manuscript. Supported by the US National Institutes of Health (P01 NS038037), the Ragon Institute of MIT, MGH and Harvard (L.H.G.), the National Cancer Research Center (R15-2006-020 to E.S.H.) and the Cancer Research Institute (V.L.).

Author information

Authors and Affiliations

Authors

Contributions

V.L. designed and did experiments and prepared the manuscript; X.C. did ChIP assays; J.-H.S. did DNA-precipitation and coimmunoprecipitation assays; E.-S.H. created T-bet mutant retroviral constructs; E.J. did doxycycline transgenic T cell experiments; M.O. generated IL-23R.GFP mice; V.K.K. contributed to discussions and manuscript preparation; A.N.B. provided technical assistance; and L.H.G. supervised the research, designed experiments and participated in preparing the manuscript.

Corresponding authors

Correspondence to Vanja Lazarevic or Laurie H Glimcher.

Ethics declarations

Competing interests

L.H.G. is on the Board of Directors and holds equity in Bristol Myers Squibb.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1–2 (PDF 1914 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazarevic, V., Chen, X., Shim, JH. et al. T-bet represses TH17 differentiation by preventing Runx1-mediated activation of the gene encoding RORγt. Nat Immunol 12, 96–104 (2011). https://doi.org/10.1038/ni.1969

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1969

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing