Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Themis controls thymocyte selection through regulation of T cell antigen receptor–mediated signaling

Abstract

Themis (thymocyte-expressed molecule involved in selection), a member of a family of proteins with unknown functions, is highly conserved among vertebrates. Here we found that Themis had high expression in thymocytes between the pre–T cell antigen receptor (pre-TCR) and positive-selection checkpoints and low expression in mature T cells. Themis-deficient thymocytes showed defective positive selection, which resulted in fewer mature thymocytes. Negative selection was also impaired in Themis-deficient mice. A greater percentage of Themis-deficient T cells had CD4+CD25+Foxp3+ regulatory and CD62LloCD44hi memory phenotypes than did wild-type T cells. In support of the idea that Themis is involved in TCR signaling, this protein was phosphorylated quickly after TCR stimulation and was needed for optimal TCR-driven calcium mobilization and activation of the kinase Erk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure, expression and localization of Themis in wild-type mice.
Figure 2: Defective positive selection in Themis−/− mice.
Figure 3: Negative selection defect in Themis−/− mice.
Figure 4: Phenotype of peripheral T cells in Themis−/− mice.
Figure 5: Defective activation of Themis-deficient T cells.
Figure 6: Themis is part of the TCR signal cascade.
Figure 7: Signaling in Themis-deficient thymocytes.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Starr, T.K., Jameson, S.C. & Hogquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Werlen, G., Hausmann, B., Naeher, D. & Palmer, E. Signaling life and death in the thymus: timing is everything. Science 299, 1859–1863 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Malissen, B. & Malissen, M. in T cell receptors (eds. Bell, J.I., Owen, M.J. & Simpson, E.) 352–368 (Oxford University Press, Oxford, 1995).

    Google Scholar 

  4. Davey, G.M. et al. Preselection thymocytes are more sensitive to T cell receptor stimulation than mature T cells. J. Exp. Med. 188, 1867–1874 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lucas, B., Stefanova, I., Yasutomo, K., Dautigny, N. & Germain, R.N. Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T cell repertoire. Immunity 10, 367–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. D'Oro, U., Vacchio, M.S., Weissman, A.M. & Ashwell, J.D. Activation of the Lck tyrosine kinase targets cell surface T cell antigen receptors for lysosomal degradation. Immunity 7, 619–628 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Naramura, M., Kole, H.K., Hu, R.-J. & Gu, H. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc. Natl. Acad. Sci. USA 95, 15547–15552 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alam, S.M. & Gascoigne, N.R.J. Post-translational regulation of TCR Vα allelic exclusion during T cell differentiation. J. Immunol. 160, 3883–3890 (1998).

    CAS  PubMed  Google Scholar 

  9. Niederberger, N. et al. Allelic exclusion of the TCR α-chain is an active process requiring TCR-mediated signaling and c-Cbl. J. Immunol. 170, 4557–4563 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Fischer, A. & Malissen, B. Natural and engineered disorders of lymphocyte development. Science 280, 237–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Zamoyska, R. et al. The influence of the src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Immunol. Rev. 191, 107–118 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Mariathasan, S. et al. Duration and strength of extracellular signal-regulated kinase signals are altered during positive versus negative thymocyte selection. J. Immunol. 167, 4966–4973 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Fischer, A.M., Katayama, C.D., Pages, G., Pouyssegur, J. & Hedrick, S.M. The role of erk1 and erk2 in multiple stages of T cell development. Immunity 23, 431–443 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. McNeil, L.K., Starr, T.K. & Hogquist, K.A. A requirement for sustained ERK signaling during thymocyte positive selection in vivo. Proc. Natl. Acad. Sci. USA 102, 13574–13579 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Daniels, M.A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Kane, L.P. & Hedrick, S.M. A role for calcium influx in setting the threshold for CD4+CD8+ thymocyte negative selection. J. Immunol. 156, 4594–4601 (1996).

    CAS  PubMed  Google Scholar 

  17. Freedman, B.D., Liu, Q.H., Somersan, S., Kotlikoff, M.I. & Punt, J.A. Receptor avidity and costimulation specify the intracellular Ca2+ signaling pattern in CD4+CD8+ thymocytes. J. Exp. Med. 190, 943–952 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johnson, A.L. et al. Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection. Nat. Immunol. advance online publication, doi:10.1038/ni1769 (13 July 2009).

  19. Lesourne, R. et al. Themis, a T cell–specific protein important for late thymocyte development. Nat. Immunol. advance online publication, doi:10.1038/ni1768 (13 July 2009).

  20. McGuire, M.V., Suthipinijtham, P. & Gascoigne, N.R.J. The mouse Supt16h/Fact140 gene, encoding part of the FACT chromatin transcription complex, maps close to Tcra and is highly expressed in thymus. Mamm. Genome 12, 664–667 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Treeck, O., Strunck, E. & Vollmer, G. A novel basement membrane-induced gene identified in the human endometrial adenocarcinoma cell line HEC1B. FEBS Lett. 425, 426–430 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Su, A.I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA 101, 6062–6067 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alam, S.M. et al. T cell receptor affinity and thymocyte positive selection. Nature 381, 616–620 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Hogquist, K.A. et al. Identification of a naturally occurring ligand for positive selection. Immunity 6, 389–399 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Fiorini, E. et al. Peptide-induced negative selection of thymocytes activates transcription of an NF-κB inhibitor. Mol. Cell 9, 637–648 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Kaye, J. et al. Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341, 746–749 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Gallegos, A.M. & Bevan, M.J. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med. 200, 1039–1049 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Ewijk, W., Hollander, G., Terhorst, C. & Wang, B. Stepwise development of thymic microenvironments in vivo is regulated by thymocyte subsets. Development 127, 1583–1591 (2000).

    CAS  PubMed  Google Scholar 

  30. Irwin, M.J. & Gascoigne, N.R.J. Interplay between superantigens and the immune system. J. Leukoc. Biol. 54, 495–503 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Scherer, M.T., Ignatowicz, L., Winslow, G.M., Kappler, J.W. & Marrack, P. Superantigens: bacterial and viral proteins that manipulate the immune system. Annu. Rev. Cell Biol. 9, 101–128 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Kisielow, P., Bluthmann, H., Staerz, U.D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742–746 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Teh, H.S. et al. Thymic major histocompatibility complex antigens and the αβ T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature 335, 229–233 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Teh, H.S., Kishi, H. & von Boehmer, H. Deletion of autospecific T cells in T cell receptor (TCR) transgenic mice spares cells with normal TCR levels and low levels of CD8 molecules. J. Exp. Med. 169, 795–800 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Ge, Q., Hu, H., Eisen, H.N. & Chen, J. Different contributions of thymopoiesis and homeostasis-driven proliferation to the reconstitution of naive and memory T cell compartments. Proc. Natl. Acad. Sci. USA 99, 2989–2994 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Berg, L.J., Finkelstein, L.D., Lucas, J.A. & Schwartzberg, P.L. Tec family kinases in T lymphocyte development and function. Annu. Rev. Immunol. 23, 549–600 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, Y.H. et al. Positive regulation of Itk PH domain function by soluble IP4. Science 316, 886–889 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Burkhardt, J.K., Carrizosa, E. & Shaffer, M.H. The actin cytoskeleton in T cell activation. Annu. Rev. Immunol. 26, 233–259 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Yachi, P.P., Ampudia, J., Gascoigne, N.R.J. & Zal, T. Nonstimulatory peptides contribute to antigen-induced CD8-T cell receptor interaction at the immunological synapse. Nat. Immunol. 6, 785–792 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yachi, P.P., Lotz, C., Ampudia, J. & Gascoigne, N.R.J. T cell activation enhancement by endogenous pMHC acts for both weak and strong agonists but varies with differentiation state. J. Exp. Med. 204, 2747–2757 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, K.Q., Bunnell, S.C., Gurniak, C.B. & Berg, L.J. T cell receptor-initiated calcium release is uncoupled from capacitative calcium entry in Itk-deficient T cells. J. Exp. Med. 187, 1721–1727 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Labno, C.M. et al. Itk functions to control actin polymerization at the immune synapse through localized activation of Cdc42 and WASP. Curr. Biol. 13, 1619–1624 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kupzig, S., Walker, S.A. & Cullen, P.J. The frequencies of calcium oscillations are optimized for efficient calcium-mediated activation of Ras and the ERK/MAPK cascade. Proc. Natl. Acad. Sci. USA 102, 7577–7582 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berg, L.J. Signalling through TEC kinases regulates conventional versus innate CD8+ T-cell development. Nat. Rev. Immunol. 7, 479–485 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Marson, A. et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445, 931–935 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305–308 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Bradley, A. Field, Y. Mondal, S. Rose, W. Sakati, V. Sharma, J. Shepherd and J. Vasquez for technical help. Supported by the US National Institutes of Health (GM048002 and AI073870 to N.R.J.G. and T32 AI07244 to M.V.M. and J.A.H.H.), the Concern Foundation for Cancer Research (S.V.), American Chemical Society (Irving S. Sigal Fellowship to J.A.H.H.), the Wellcome Trust (GR076558MA to O.A., C.B. and M.S.), the Sir William Dunn School of Pathology (O.A., C.B. and M.S.) and Lincoln College, Oxford (Sloane Robinson Graduate Award to C.B.). This is manuscript 19524 from The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

N.R.J.G., M.V.M., S.V. and G.F. designed the project; M.V.M. cloned Themis and did initial gene-sequencing and expression analysis; G.F., S.V., V.R. and J.A. did the main part of the study analyzing the Themis-deficient mice, with contributions from J.A.H.H., A.M. and J.H.; P.R.F. constructed the Themis targeting vector and did expression studies; C.B., M.S. and O.A. identified and analyzed human Themis phosphorylation; Y.H.H. and K.S. helped with T cell signaling assays; H.S.F. did the in situ hybridization; N.R.J.G. and S.V. wrote the manuscript with contributions from G.F., V.R., K.S., O.A., A.M. and M.V.M.; and G.F., S.V., V.R., C.B., J.A.H.H. and N.R.J.G. prepared figures.

Corresponding author

Correspondence to Nicholas R J Gascoigne.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–2 (PDF 672 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, G., Vallée, S., Rybakin, V. et al. Themis controls thymocyte selection through regulation of T cell antigen receptor–mediated signaling. Nat Immunol 10, 848–856 (2009). https://doi.org/10.1038/ni.1766

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1766

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing