Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The gene encoding early growth response 2, a target of the transcription factor NFAT, is required for the development and maturation of natural killer T cells

Abstract

The influence of signals transmitted by the phosphatase calcineurin and the transcription factor NFAT on the development and function of natural killer T (NKT) cells is unclear. In this report, we demonstrate that the transcription factor early growth response 2 (Egr2), a target gene of NFAT, was specifically required for the ontogeny of NKT cells but not that of conventional CD4+ or CD8+ T cells. NKT cells developed normally in the absence of Egr1 or Egr3, which suggests that Egr2 is a specific regulator of NKT cell differentiation. We found that Egr2 was important in the selection, survival and maturation of NKT cells. Our findings emphasize the importance of the calcineurin-NFAT-Egr2 pathway in the development of the NKT lymphocyte lineage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The calcineurin-NFAT pathway is required for the development of NKT cells.
Figure 2: Egr2−/− mice have a severe defect in NKT cell development.
Figure 3: Egr2 is required for the productive selection and terminal maturation of NKT cells.
Figure 4: Similar CD1d expression and presentation of endogenous glycolipid by thymocytes from Egr2−/− and wild-type fetal liver chimeras.
Figure 5: Egr2−/− NKT cells have more proliferation and apoptosis.

Similar content being viewed by others

References

  1. Bendelac, A., Savage, P.B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Matsuda, J.L., Mallevaey, T., Scott-Browne, J. & Gapin, L. CD1d-restricted iNKT cells, the 'Swiss-Army knife' of the immune system. Curr. Opin. Immunol. 20, 358–368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vincent, M.S., Gumperz, J.E. & Brenner, M.B. Understanding the function of CD1-restricted T cells. Nat. Immunol. 4, 517–523 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Gapin, L., Matsuda, J.L., Surh, C.D. & Kronenberg, M. NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat. Immunol. 2, 971–978 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Wei, D.G. et al. Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes. J. Exp. Med. 202, 239–248 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Benlagha, K., Kyin, T., Beavis, A., Teyton, L. & Bendelac, A. A thymic precursor to the NK T cell lineage. Science 296, 553–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Pellicci, D.G. et al. A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1CD4+ CD1d-dependent precursor stage. J. Exp. Med. 195, 835–844 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alberola-Ila, J., Hogquist, K.A., Swan, K.A., Bevan, M.J. & Perlmutter, R.M. Positive and negative selection invoke distinct signaling pathways. J. Exp. Med. 184, 9–18 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Borowski, C. & Bendelac, A. Signaling for NKT cell development: the SAP-FynT connection. J. Exp. Med. 201, 833–836 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chung, B., Aoukaty, A., Dutz, J., Terhorst, C. & Tan, R. Signaling lymphocytic activation molecule-associated protein controls NKT cell functions. J. Immunol. 174, 3153–3157 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Eberl, G., Lowin-Kropf, B. & MacDonald, H.R. Cutting edge: NKT cell development is selectively impaired in Fyn- deficient mice. J. Immunol. 163, 4091–4094 (1999).

    CAS  PubMed  Google Scholar 

  12. Gadue, P., Morton, N. & Stein, P.L. The Src family tyrosine kinase Fyn regulates natural killer T cell development. J. Exp. Med. 190, 1189–1196 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nichols, K.E. et al. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat. Med. 11, 340–345 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Stanic, A.K. et al. Cutting edge: the ontogeny and function of Va14Ja18 natural T lymphocytes require signal processing by protein kinase C θ and NF-κB. J. Immunol. 172, 4667–4671 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Townsend, M.J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity 20, 477–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Ohteki, T. et al. The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T cell receptor-α/β+ (NK1+ T) cells, natural killer cells, and intestinal intraepithelial T cells. J. Exp. Med. 187, 967–972 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sivakumar, V., Hammond, K.J., Howells, N., Pfeffer, K. & Weih, F. Differential requirement for Rel/nuclear factor κ B family members in natural killer T cell development. J. Exp. Med. 197, 1613–1621 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Yoshida, H. et al. The transcription factor NF-ATc1 regulates lymphocyte proliferation and Th2 cytokine production. Immunity 8, 115–124 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Xanthoudakis, S. et al. An enhanced immune response in mice lacking the transcription factor NFAT1. Science 272, 892–895 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Ranger, A.M. et al. Delayed lymphoid repopulation with defects in IL-4-driven responses produced by inactivation of NF-ATc. Immunity 8, 125–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Oukka, M. et al. The transcription factor NFAT4 is involved in the generation and survival of T cells. Immunity 9, 295–304 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Hodge, M.R. et al. Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. Immunity 4, 397–405 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Cante-Barrett, K., Winslow, M.M. & Crabtree, G.R. Selective role of NFATc3 in positive selection of thymocytes. J. Immunol. 179, 103–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Bueno, O.F., Brandt, E.B., Rothenberg, M.E. & Molkentin, J.D. Defective T cell development and function in calcineurin Aβ-deficient mice. Proc. Natl. Acad. Sci. USA 99, 9398–9403 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Neilson, J.R., Winslow, M.M., Hur, E.M. & Crabtree, G.R. Calcineurin B1 is essential for positive but not negative selection during thymocyte development. Immunity 20, 255–266 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Gallo, E.M. et al. Calcineurin sets the bandwidth for discrimination of signals during thymocyte development. Nature 450, 731–735 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rengarajan, J. et al. Sequential involvement of NFAT and Egr transcription factors in FasL regulation. Immunity 12, 293–300 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Shao, H., Kono, D.H., Chen, L.Y., Rubin, E.M. & Kaye, J. Induction of the early growth response (Egr) family of transcription factors during thymic selection. J. Exp. Med. 185, 731–744 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carleton, M. et al. Early growth response transcription factors are required for development of CD4CD8 thymocytes to the CD4+CD8+ stage. J. Immunol. 168, 1649–1658 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Koltsova, E.K. et al. Early growth response 1 and NF-ATc1 act in concert to promote thymocyte development beyond the β-selection checkpoint. J. Immunol. 179, 4694–4703 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Miyazaki, T. Two distinct steps during thymocyte maturation from CD4CD8 to CD4+CD8+ distinguished in the early growth response (Egr)-1 transgenic mice with a recombinase-activating gene-deficient background. J. Exp. Med. 186, 877–885 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miyazaki, T. & Lemonnier, F.A. Modulation of thymic selection by expression of an immediate-early gene, early growth response 1 (Egr-1). J. Exp. Med. 188, 715–723 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bettini, M., Xi, H., Milbrandt, J. & Kersh, G.J. Thymocyte development in early growth response gene 1-deficient mice. J. Immunol. 169, 1713–1720 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Carter, J.H., Lefebvre, J.M., Wiest, D.L. & Tourtellotte, W.G. Redundant role for early growth response transcriptional regulators in thymocyte differentiation and survival. J. Immunol. 178, 6796–6805 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Swiatek, P.J. & Gridley, T. Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox20. Genes Dev. 7, 2071–2084 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Benlagha, K., Wei, D.G., Veiga, J., Teyton, L. & Bendelac, A. Characterization of the early stages of thymic NKT cell development. J. Exp. Med. 202, 485–492 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Godfrey, D.I. & Berzins, S.P. Control points in NKT-cell development. Nat. Rev. Immunol. 7, 505–518 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Safford, M. et al. Egr-2 and Egr-3 are negative regulators of T cell activation. Nat. Immunol. 6, 472–480 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Carter, J.H. & Tourtellotte, W.G. Early growth response transcriptional regulators are dispensable for macrophage differentiation. J. Immunol. 178, 3038–3047 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Nguyen, H.Q., Hoffman-Liebermann, B. & Liebermann, D.A. The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage. Cell 72, 197–209 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Krishnaraju, K., Hoffman, B. & Liebermann, D.A. Early growth response gene 1 stimulates development of hematopoietic progenitor cells along the macrophage lineage at the expense of the granulocyte and erythroid lineages. Blood 97, 1298–1305 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Krishnaraju, K., Nguyen, H.Q., Liebermann, D.A. & Hoffman, B. The zinc finger transcription factor Egr-1 potentiates macrophage differentiation of hematopoietic cells. Mol. Cell. Biol. 15, 5499–5507 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, S.L., Tourtellotte, L.C., Wesselschmidt, R.L. & Milbrandt, J. Growth and differentiation proceeds normally in cells deficient in the immediate early gene NGFI-A. J. Biol. Chem. 270, 9971–9977 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Laslo, P. et al. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126, 755–766 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Brigl, M., Bry, L., Kent, S.C., Gumperz, J.E. & Brenner, M.B. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat. Immunol. 4, 1230–1237 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Zullo, A.J., Benlagha, K., Bendelac, A. & Taparowsky, E.J. Sensitivity of NK1.1-negative NKT cells to transgenic BATF defines a role for activator protein-1 in the expansion and maturation of immature NKT cells in the thymus. J. Immunol. 178, 58–66 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Kozoriz for cell sorting; the National Institutes of Health Tetramer Core Facility at Emory University for unloaded and PBS57-loaded CD1d tetramers; J. Milbrandt (Washington University) for Egr2+/− and Egr3−/− mice; and M. Brenner (Harvard Medical School) and M. Brigl (Harvard Medical School) for the human NKT cell clone BM2a.3. Supported by the National Institutes of Health (PONS038037 and UOAI31541 to L.H.G.) and the Cancer Research Institute (V.L.)

Author information

Authors and Affiliations

Authors

Contributions

V.L. designed and did experiments and prepared the manuscript; A.J.Z. and T.L.S. contributed to discussions, experimental design and manuscript preparation; A.J.Z. and M.N.S. provided technical assistance; L.H.G. supervised the work and the manuscript preparation; and G.R.C. and E.M.G. provided Cnb1fl/fl Lck-Cre+ mice.

Corresponding author

Correspondence to Laurie H Glimcher.

Ethics declarations

Competing interests

L.H.G. is on the board of directors and holds equity in Bristol Myers Squibb.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Table 1 and Supplementary Methods (PDF 3074 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazarevic, V., Zullo, A., Schweitzer, M. et al. The gene encoding early growth response 2, a target of the transcription factor NFAT, is required for the development and maturation of natural killer T cells. Nat Immunol 10, 306–313 (2009). https://doi.org/10.1038/ni.1696

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1696

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing