Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Paxillin binds schwannomin and regulates its density-dependent localization and effect on cell morphology

Abstract

Neurofibromatosis type 2 is an autosomal dominant disorder characterized by tumors, predominantly schwannomas, in the nervous system. It is caused by mutations in the gene NF2, encoding the growth regulator schwannomin (also known as merlin). Mutations occur throughout the 17-exon gene, with most resulting in protein truncation and undetectable amounts of schwannomin protein. Pathogenic mutations that result in production of defective schwannomin include in-frame deletions of exon 2 and three independent missense mutations within this same exon. Mice with conditional deletion of exon 2 in Schwann cells develop schwannomas, which confirms the crucial nature of exon 2 for growth control. Here we report that the molecular adaptor paxillin binds directly to schwannomin at residues 50–70, which are encoded by exon 2. This interaction mediates the membrane localization of schwannomin to the plasma membrane, where it associates with β1 integrin and erbB2. It defines a pathogenic mechanism for the development of NF2 in humans with mutations in exon 2 of NF2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schwannomin coimunoprecipitates and colocalizes with β1 integrin.
Figure 2: Schwannomin and paxillin colocalize at the cell periphery in subconfluent cells.
Figure 3: Schwannomin and paxillin associate in Schwann cells.
Figure 4: Two PBDs are located at aa 50–70 and 425–450 in schwannomin.
Figure 5: Schwannomin variants ΔPBD1, Trp60Cys and Phe62Ser fail to bind paxillin.
Figure 6: PBD1 is required for membrane localization and polarization.
Figure 7: Schwannomin and paxillin associate with β1 integrin and erbB2 in a density-dependent manner.
Figure 8: Model of schwannomin interactions in proliferating and quiescent Schwann cells.

Similar content being viewed by others

References

  1. Rouleau, G.A. et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363, 515–521 (1993).

    Article  CAS  Google Scholar 

  2. Trofatter, J.A. et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumour suppressor. Cell 72, 791–800 (1993); erratum Cell 75, 826 (1993).

    Article  CAS  Google Scholar 

  3. Jacoby, L.B., MacCollin, M., Barone R., Ramesh, V. & Gusella J.F. Frequency and distribution of NF2 mutations in schwannomas. Genes Chromosom. Cancer 17, 45–55 (1996).

    Article  CAS  Google Scholar 

  4. Bourn, D., Carter, S., Gareth, D., Evans, R. & Strachan, T. Germline mutations in the neurofibromatosis type 2 tumour suppressor gene. Hum. Mol. Genet. 3, 813–816 (1994).

    Article  CAS  Google Scholar 

  5. Scoles, D.R. Baser, M.E. & Pulst, S.M. A missense mutation in the neurofibromatosis 2 gene occurs in patients with mild and severe phenotypes. Neurology 47, 544–546 (1996).

    Article  CAS  Google Scholar 

  6. Bianchi, A.B. et al. Mutations in transcript isoforms of the neurofibromatosis 2 gene in multiple human tumour types. Nature Genet. 6, 185–192 (1994).

    Article  CAS  Google Scholar 

  7. Welling, D.B. et al. Mutational spectrum in the neurofibromatosis type 2 gene in sporadic and familial schwannomas. Hum. Genet. 98, 189–193 (1996).

    Article  CAS  Google Scholar 

  8. Giovannini, M. et al. Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev. 14, 1617–1630 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Deguen, B. et al. Impaired interaction of naturally occurring mutant NF2 protein with actin-based cytoskeleton and membrane. Hum. Mol. Genet. 7, 217–226 (1998).

    Article  CAS  Google Scholar 

  10. Heiska, L. et al. Association of ezrin with intercellular adhesion molecule-1 and -2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 273, 21893–21900 (1998).

    Article  CAS  Google Scholar 

  11. Sainio, M. et al. Neurofibromatosis 2 tumour suppressor protein colocalizes with ezrin and CD44 and associates with actin-containing cytoskeleton. J. Cell Sci. 110, 2249–2260 (1997).

    CAS  PubMed  Google Scholar 

  12. Xing, B., Jedsadayanmata, A. & Lam, S.C. Localization of an integrin binding site to the C terminus of talin. J. Biol. Chem. 276, 44373–44378 (2001).

    Article  CAS  Google Scholar 

  13. Obremski, V.J., Hall, A.M. & Fernandez-Valle, C. Schwannomin, the neurofibromatosis type 2 gene product, and β1 integrin associate in isolated and differentiating Schwann cell. J. Neurobiol. 37, 487–501 (1998).

    Article  CAS  Google Scholar 

  14. Scoles, D.R. et al. Neurofibromatosis 2 tumour suppressor schwannomin interacts with βII spectrin. Nature Genet. 18, 354–359 (1998).

    Article  CAS  Google Scholar 

  15. Gonzalez-Agosti, C., Wiederhold, T., Herndon, M.E., Gusella, J. & Ramesh, V. Interdomain interaction of schwannomin isoforms and its influence on intermolecular binding to NHE-RF. J. Biol. Chem. 274, 34438–34442 (1999).

    Article  CAS  Google Scholar 

  16. Gronholm, M. et al. Homotypic and heterotypic interaction of the neurofibromatosis 2 tumour suppressor protein schwannomin and the ERM protein ezrin. J. Cell Sci. 112, 895–904. (1999).

    CAS  PubMed  Google Scholar 

  17. Goutebroze, L., Brault, E., Muchardt, C., Camonis, J. & Thomas, G. Cloning and characterization of SCHIP-1, a novel protein interacting specifically with spliced isoforms and naturally occurring mutant NF2 proteins. Mol. Cell. Biol. 20, 1699–1712 (2000).

    Article  CAS  Google Scholar 

  18. Jannatipour, J. et al. Schwannomin isoform-1 interacts with syntenin via PDZ domains. J. Biol. Chem. 276, 33093–33100 (2001).

    Article  CAS  Google Scholar 

  19. Pykett, M.J., Murphy, M., Harnish, P.R. & George, D.L. The neurofibromatosis 2 (NF2) tumour suppressor gene encodes multiple alternatively spliced transcripts. Hum. Mol. Genet. 3, 559–564 (1994).

    Article  CAS  Google Scholar 

  20. Turner, C.E. Paxillin interactions. J. Cell Sci. 113, 4139–4140 (2000).

    CAS  PubMed  Google Scholar 

  21. Turner, C.E. & Miller, J.T. Primary sequence of paxillin contains putative SH2 and SH3 domain binding motifs and multiple LIM domains: identification of a vinculin and pp125Fak-binding region. J. Cell Sci. 107, 1583–1591 (1994).

    CAS  PubMed  Google Scholar 

  22. Brown, M.C., Perrotta, J.A. & Turner, C.E. Serine and threonine phosphorylation of the paxillin LIM domains regulates paxillin focal adhesion localization and cell adhesion to fibronectin. Mol. Biol. Cell. 9, 1803–1816 (1998).

    Article  CAS  Google Scholar 

  23. Norman, J.C. et al. ARF1 mediates paxillin recruitment to focal adhesions and potentiates Rho-stimulated stress fiber formation in intact and permeabilized Swiss 3T3 fibroblasts. J. Cell Biol. 143, 1981–1995 (1998).

    Article  CAS  Google Scholar 

  24. Turner, C.E. et al. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: a role in cytoskeletal remodeling. J. Cell Biol. 145, 851–863 (1999).

    Article  CAS  Google Scholar 

  25. Shaw, R.J. et al. Nf2 tumour suppressor, merlin, functions in Rac-dependent signaling. Dev. Cell. 1, 63–72 (2001).

    Article  CAS  Google Scholar 

  26. Xiao, G.-H., Beeser, A., Chernoff, J. & Testa, J.R. p21-activated kinase links Rac/Cdc42 signaling to merlin. J. Biol. Chem. 277, 883–886 (2002).

    Article  CAS  Google Scholar 

  27. Eldridge, C.F., Bunge, M.B., Bunge, R.P. & Wood, P.M. Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J. Cell Biol. 105, 1023–1034 (1987).

    Article  CAS  Google Scholar 

  28. Fernandez-Valle, C., Fregien, N., Wood, P.M. & Bunge, M.B. Expression of the protein zero myelin gene in axon-related Schwann cells is linked to basal lamina formation. Development 119, 867–880 (1993).

    CAS  PubMed  Google Scholar 

  29. Fields, R.D. Effects of ion channel activity on development of dorsal root ganglion neurons. J. Neurobiol. 37, 158–170 (1998).

    Article  CAS  Google Scholar 

  30. Bunge, R.P. & Fernandez-Valle, C. in Neuralglial Cells (eds Kettenmann, H. & Ransom, B.) 44–57 (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  31. Marchionni, M.A. et al. Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362, 312–318 (1993).

    Article  CAS  Google Scholar 

  32. Fernandez-Valle, C., Gwynn, L., Wood, P.M., Carbonetto, S. & Bunge, M.B. Anti-β1 integrin antibody inhibits Schwann cell myelination. J. Neurobiol. 25, 1207–1226 (1994).

    Article  CAS  Google Scholar 

  33. Morrissey, T.K., Levi, A.D., Nuijens, A., Sliwkowski, M.X. & Bunge, R.P. Axon-induced mitogenesis of human Schwann cells involves heregulin and p185erbB2. Proc. Natl Acad. Sci. USA 92, 1431–1435 (1995).

    Article  CAS  Google Scholar 

  34. Vartanian, T., Goodearl, A., Viehover, A. & Fischbach, G. Axonal neuregulin signals cells of the oligodendrocyte lineage through activation of HER4 and Schwann cells through HER2 and HER3. J. Cell Biol. 137, 211–220 (1997).

    Article  CAS  Google Scholar 

  35. Chen, L.M., Bailey, D. & Fernandez-Valle, C. Association of β1 integrin with focal adhesion kinase and paxillin in differentiating Schwann cells. J. Neurosci. 20, 3776–3784 (2000).

    Article  CAS  Google Scholar 

  36. Fernandez-Valle, C., Gorman, D., Gomez, A.M. & Bunge, M.B. Actin plays a role in both changes in cell shape and gene expression associated with Schwann cell myelination. J. Neurosci. 17, 241–250 (1997).

    Article  CAS  Google Scholar 

  37. Plopper, G. & Ingber, D.E. Rapid induction and isolation of focal adhesion complexes. Biochem. Biophys. Res. Commun. 193, 571–578 (1993).

    Article  CAS  Google Scholar 

  38. Schmucker, B., Ballhausen, W.G. & Kressel, M. Subcellular localization and expression pattern of the neurofibromatosis type 2 protein merlin/schwannomin. Eur. J. Cell Biol. 72, 46–53 (1997).

    CAS  PubMed  Google Scholar 

  39. Kangs, B.S., Cooper, D.R., Devedjiev, Y., Derewenda, U. & Derewenda, Z.S. The structure of the FERM domain of merlin, the neurofibromatosis type 2 gene product. Acta Crystallogr. D. 58, 381–391 (2002).

    Article  Google Scholar 

  40. Vadlamudi, R., Adam, L., Talukder, A., Mendelsohn, J. & Kumar, R. Serine phosphorylation of paxillin by heregulin-β1: role of p38 mitogen activated protein kinase. Oncogene 18, 7253–7264 (1999).

    Article  CAS  Google Scholar 

  41. Edwards, S.D. & Keep, N.H. The 2.7 Å crystal structure of the activated ferm domain of moesin: an analysis of structural changes on activation. Biochemistry 40, 7061–7068 (2001).

    Article  CAS  Google Scholar 

  42. Matsui, T. et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol. 140, 647–657 (1998).

    Article  CAS  Google Scholar 

  43. Turunen, O., Sainio, M., Jaaskelainen, J., Carpen, O. & Vaheri, A. Structure-function relationships in the ezrin family and the effect of tumour-associated point mutations in neurofibromatosis 2 protein. Biochim. Biophys. Acta 1387, 1–16 (1998).

    Article  CAS  Google Scholar 

  44. Stokowski, R.A. & Cox D.R. Functional analysis of the neurofibromatosis type 2 protein by means of disease-causing point mutations. Am. J. Hum. Genet. 66, 873–891 (2000).

    Article  CAS  Google Scholar 

  45. West, K.A. et al. The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). J. Cell Biol. 154, 161–167 (2001).

    Article  CAS  Google Scholar 

  46. Nikolopoulos, S.N & Turner, C.E. Molecular dissection of actopaxin-integrin-linked kinase-paxillin interactions and their role in subcellular localization. J. Biol. Chem. 277, 1568–1575 (2002).

    Article  CAS  Google Scholar 

  47. Turner, C.E., West, K.A. & Brown, M.C. Paxillin-ARF GAP signaling and the cytoskeleton. Curr. Opin. Cell Biol. 13, 593–599 (2001).

    Article  CAS  Google Scholar 

  48. Scherer, S.S. & Gutmann, D.H. Expression of the neurofibromatosis 2 tumour suppressor gene product, schwannomin, in Schwann cells. J. Neurosci. Res. 46, 595–605 (1996).

    Article  CAS  Google Scholar 

  49. Morrison, H. et al. The NF2 tumour suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev. 15, 968–980 (2001).

    Article  CAS  Google Scholar 

  50. Scoles, D.R. et al. The neurofibromatosis 2 tumour suppressor protein interacts with hepatocyte growth factor-regulated tyrosine kinase substrate. Hum. Mol. Genet. 9, 1567–1574 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Turner for paxillin cDNA; S. Pulst and L. Sherman for discussions; and D. Bailey and E. Rodriguez for technical assistance. This work was supported by a US Public Health Service grant (to C.F.-V.), a National Neurofibromatosis Foundation Young Investigator Award (to J.R.) and the State of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Fernandez-Valle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez-Valle, C., Tang, Y., Ricard, J. et al. Paxillin binds schwannomin and regulates its density-dependent localization and effect on cell morphology. Nat Genet 31, 354–362 (2002). https://doi.org/10.1038/ng930

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng930

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing