Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway

Abstract

Members of the Hedgehog (Hh) family of signaling proteins are powerful regulators of developmental processes in many organisms and have been implicated in many human disease states. Here we report the results of a genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. The screen identified hundreds of potential new regulators of Hh signaling, including many large protein complexes with pleiotropic effects, such as the coat protein complex I (COPI) complex, the ribosome and the proteasome. We identified the multimeric protein phosphatase 2A (PP2A) and two new kinases, the D. melanogaster orthologs of the vertebrate PITSLRE and cyclin-dependent kinase-9 (CDK9) kinases, as Hh regulators. We also identified a large group of constitutive and alternative splicing factors, two nucleoporins involved in mRNA export and several RNA-regulatory proteins as potent regulators of Hh signal transduction, indicating that splicing regulation and mRNA transport have a previously unrecognized role in Hh signaling. Finally, we showed that several of these genes have conserved roles in mammalian Hh signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assay design and validation of the primary screen for new components of Hh signaling.
Figure 2: Primary screen results.
Figure 3: Vesicular trafficking genes are important in Hh signaling.
Figure 4: Identification of new kinases affecting Hh signaling.
Figure 5: Splicing factors have a role in Hh signaling.
Figure 6: PP2A and its regulatory B subunits regulate Hh signaling.

Similar content being viewed by others

References

  1. Ogden, S.K., Ascano, M. Jr., Stegman, M.A. & Robbins, D.J. Regulation of Hedgehog signaling: a complex story. Biochem. Pharmacol. 67, 805–814 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nybakken, K. & Perrimon, N. Hedgehog signal transduction: recent findings. Curr. Opin. Genet. Dev. 12, 503–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Lum, L. & Beachy, P.A. The Hedgehog response network: sensors, switches, and routers. Science 304, 1755–1759 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Mello, C.C. & Conte, D., Jr. Revealing the world of RNA interference. Nature 431, 338–342 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Cherry, S. et al. Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation inhibition. Genes Dev. 19, 445–452 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Foley, E. & O'Farrell, P.H. Functional dissection of an innate immune response by a genome-wide RNAi screen. PLoS Biol. 2, E203 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kiger, A.A. et al. A functional genomic analysis of cell morphology using RNA interference. J. Biol. 2, 27 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lum, L. et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, C.H. et al. Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell 98, 305–316 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. DasGupta, R., Kaykas, A., Moon, R.T. & Perrimon, N. Functional genomic analysis of the Wnt-wingless signaling pathway. Science 308, 826–833 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Lejeune, F. & Maquat, L.E. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr. Opin. Cell Biol. 17, 309–315 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Pyronnet, S., Pradayrol, L. & Sonenberg, N. Alternative splicing facilitates internal ribosome entry on the ornithine decarboxylase mRNA. Cell. Mol. Life Sci. 62, 1267–1274 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Noureddine, M.A., Donaldson, T.D., Thacker, S.A. & Duronio, R.J. Drosophila Roc1a encodes a RING-H2 protein with a unique function in processing the Hh signal transducer Ci by the SCF E3 ubiquitin ligase. Dev. Cell 2, 757–770 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Ou, C.Y., Lin, Y.F., Chen, Y.J. & Chien, C.T. Distinct protein degradation mechanisms mediated by Cul1 and Cul3 controlling Ci stability in Drosophila eye development. Genes Dev. 16, 2403–2414 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang, J. & Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391, 493–496 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Deshaies, R.J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15, 435–467 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. de Falco, G. & Giordano, A. CDK9 (PITALRE): a multifunctional cdc2-related kinase. J. Cell. Physiol. 177, 501–506 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. De Luca, A., De Falco, M., Baldi, A. & Paggi, M.G. Cyclin T: three forms for different roles in physiological and pathological functions. J. Cell. Physiol. 194, 101–107 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Garriga, J. & Grana, X. Cellular control of gene expression by T-type cyclin/CDK9 complexes. Gene 337, 15–23 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Hu, D., Mayeda, A., Trembley, J.H., Lahti, J.M. & Kidd, V.J. CDK11 complexes promote pre-mRNA splicing. J. Biol. Chem. 278, 8623–8629 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Lahti, J.M., Xiang, J. & Kidd, V.J. The PITSLRE protein kinase family. Prog. Cell Cycle Res. 1, 329–338 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Trembley, J.H. et al. PITSLRE p110 protein kinases associate with transcription complexes and affect their activity. J. Biol. Chem. 277, 2589–2596 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, K., Smouse, D. & Perrimon, N. The crooked neck gene of Drosophila contains a motif found in a family of yeast cell cycle genes. Genes Dev. 5, 1080–1091 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Raisin-Tani, S. & Leopold, P. Drosophila crooked-neck protein co-fractionates in a multiprotein complex with splicing factors. Biochem. Biophys. Res. Commun. 296, 288–292 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Chung, S., McLean, M.R. & Rymond, B.C. Yeast ortholog of the Drosophila crooked neck protein promotes spliceosome assembly through stable U4/U6.U5 snRNP addition. RNA 5, 1042–1054 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park, J.W., Parisky, K., Celotto, A.M., Reenan, R.A. & Graveley, B.R. Identification of alternative splicing regulators by RNA interference in Drosophila. Proc. Natl. Acad. Sci. USA 101, 15974–15979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burnette, J.M., Hatton, A.R. & Lopez, A.J. Trans-acting factors required for inclusion of regulated exons in the Ultrabithorax mRNAs of Drosophila melanogaster. Genetics 151, 1517–1529 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Black, D.L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Hastings, M.L. & Krainer, A.R. Pre-mRNA splicing in the new millennium. Curr. Opin. Cell Biol. 13, 302–309 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Kelley, R.L. Initial organization of the Drosophila dorsoventral axis depends on an RNA-binding protein encoded by the squid gene. Genes Dev. 7, 948–960 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Lall, S. et al. Squid hnRNP protein promotes apical cytoplasmic transport and localization of Drosophila pair-rule transcripts. Cell 98, 171–180 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Barnard, D.C., Ryan, K., Manley, J.L. & Richter, J.D. Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell 119, 641–651 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Bastos, R., Lin, A., Enarson, M. & Burke, B. Targeting and function in mRNA export of nuclear pore complex protein Nup153. J. Cell Biol. 134, 1141–1156 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Powers, M.A., Forbes, D.J., Dahlberg, J.E. & Lund, E. The vertebrate GLFG nucleoporin, Nup98, is an essential component of multiple RNA export pathways. J. Cell Biol. 136, 241–250 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ullman, K.S., Shah, S., Powers, M.A. & Forbes, D.J. The nucleoporin nup153 plays a critical role in multiple types of nuclear export. Mol. Biol. Cell 10, 649–664 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Therond, P.P., Knight, J.D., Kornberg, T.B. & Bishop, J.M. Phosphorylation of the fused protein kinase in response to signaling from hedgehog. Proc. Natl. Acad. Sci. USA 93, 4224–4228 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Robbins, D.J. et al. Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell 90, 225–234 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Q.T. & Holmgren, R.A. The subcellular localization and activity of Drosophila cubitus interruptus are regulated at multiple levels. Development 126, 5097–5106 (1999).

    CAS  PubMed  Google Scholar 

  40. Nybakken, K.E., Turck, C.W., Robbins, D.J. & Bishop, J.M. Hedgehog-stimulated phosphorylation of the kinesin-related protein Costal2 is mediated by the serine/threonine kinase fused. J. Biol. Chem. 277, 24638–24647 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Price, M.A. & Kalderon, D. Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell 108, 823–835 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Denef, N., Neubuser, D., Perez, L. & Cohen, S.M. Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 102, 521–531 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Jia, J. et al. Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature 416, 548–552 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Janssens, V. & Goris, J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 353, 417–439 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Randsholt, N.B., Maschat, F. & Santamaria, P. Polyhomeotic controls engrailed expression and the hedgehog signaling pathway in imaginal discs. Mech. Dev. 95, 89–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Collins, R.T. & Cohen, S.M. A genetic screen in Drosophila for identifying novel components of the hedgehog signaling pathway. Genetics 170, 173–184 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bond, B.J. & Davidson, N. The Drosophila melanogaster actin 5C gene uses two transcription initiation sites and three polyadenylation sites to express multiple mRNA species. Mol. Cell. Biol. 6, 2080–2088 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taylor, F.R. et al. Enhanced potency of human Sonic hedgehog by hydrophobic modification. Biochemistry 40, 4359–4371 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Ascano, M. Jr., Nybakken, K.E., Sosinski, J., Stegman, M.A. & Robbins, D.J. The carboxyl-terminal domain of the protein kinase fused can function as a dominant inhibitor of hedgehog signaling. Mol. Cell. Biol. 22, 1555–1566 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Dasgupta, S. Armknecht, K. Kerr, S. Talala, J. Murphy, I. Flockhart, M. Booker, N. Ramadan, B. Mathey-Prevot and the entire staff of the Drosophila RNAi Screening Center at Harvard Medical School for assistance throughout the project; the Harvard Institute of Chemistry and Cell Biology screening center and its staff for use of equipment and advice; A. Kiger, M. Boutros and the Heidelberg Screening Consortium for their work in establishing the dsRNA collection; K. Richards, K. Kerr, L. Hrdlicka and C. Villalta for technical assistance; P. Bradley, H. Agaisse, R. Zhou and the rest of the Perrimon lab for advice; P. Beachy for the ptcΔ136 reporter construct; T. Kornberg and P. Aza-Blanc for the Hh and Ci plasmids; and P. Wolfe for assistance in identifying mammalian orthologs. This work was supported in part by a National Institutes of Health postdoctoral fellowship (K.N.), the Howard Hughes Medical Institute (N.P.), National Institutes of Health grants (T.-Y.L., N.P. and A.P.M.) and the Helen Hay Whitney Foundation (S.A.V.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kent Nybakken or Norbert Perrimon.

Ethics declarations

Competing interests

A.P.M. is a patent holder on licensed Hedgehog-related technologies and has stock options in Curis Corp., a biotechnology company pursuing the Hedgehog pathway.

Supplementary information

Supplementary Fig. 1

Secondary assays. (PDF 116 kb)

Supplementary Fig. 2

Phosphorylation of Fu and Cos2 are not affected by reduction in Cdk9, Pitslre, or mts. (PDF 133 kb)

Supplementary Table 1

Potential positive regulators of Hh signaling. (PDF 159 kb)

Supplementary Table 2

Potential negative regulators of Hh signaling. (PDF 103 kb)

Supplementary Table 3

Orthologs of potential Hh regulators. (PDF 141 kb)

Supplementary Table 4

Summary information and scores for genes tested in secondary assays. (PDF 225 kb)

Supplementary Methods (PDF 184 kb)

Supplementary Note (PDF 256 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nybakken, K., Vokes, S., Lin, TY. et al. A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nat Genet 37, 1323–1332 (2005). https://doi.org/10.1038/ng1682

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1682

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing