Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multifactorial inheritance of neural tube defects: localization of the major gene and recognition of modifiers in ct mutant mice

Abstract

Neural tube defects (NTD) in humans have been considered to have a multifactorial aetiology, however the participating genes have not been identified. The curly–tail (ct) mutant mouse develops NTD that resemble the human malformations in location, pathology and associated abnormalities. Moreover, there appears to be multifactorial influence on the incidence of NTD in offspring of curly–tail mice. We now describe a linkage analysis that localizes the ct gene to distal chromosome 4 in mice. Further analysis using recombinant inbred strains demonstrates the presence of at least three modifier loci that influence the incidence of NTD. This study provides definitive evidence for multifactorial inheritance in a mouse model of human NTD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Laurence, K.M., in Principles and Practice of Medical Genetics 2nd edn (eds A. E. H. Emery & D. L Rimoin) 323–346 (Churchill Livingston, Edinburgh, 1990).

    Google Scholar 

  2. Emery, A.E.H. Methodology in Medical Genetics 2nd edn 58 (Churchill Livingstone, Edinburgh, 1986).

    Google Scholar 

  3. Wald, N., Sneddon, J., Densem, J., Frost, C., Stone, R. & MRC Vitamin Study Research Group. Prevention of neural tube defects: Results of the Medical Research Council vitamin study. Lancet 338, 131–137 (1991).

    Article  Google Scholar 

  4. Czeizel, A.E. & Dudas, I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. New Engl. J. Med. 327, 1832–1835 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Lammer, E.J., Sever, L.E. & Oakley, G.P. Teratogen update: valproic acid. Teratology 35, 465–473 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Hobbins, J.C. Diagnosis and management of neural-tube defects today. New Engl. J. Med. 324, 690–691 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Epstein, D.J., Vekemans, M. & Gros, P. Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67, 767–774 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Thomas, K.R., Musci, T.S., Neumann, P.E. & Capecchi, M.R. Swaying is a mutant allele of the proto-oncogene, Wnt-1. Cell 67, 969–976 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Hui, C. & Joyner, A.L. A mouse model of Greig cephalopolysyndactyly: The extra-toesJ mutation contains an intragenic deletion of the GIi3 gene. Nature Genet. 3, 241–246 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Baldwin, C.T., Hoth, C.F., Amos, J.A. da Silva, E.O. & Milunsky, A. An exonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome. Nature 355, 637–638 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Tassabehji, M. et al. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355, 635–636 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Gruneberg, H. Genetical studies on the skeleton of the mouse: VIII curly-tail. J. Genet. 52, 52–67 (1954).

    Article  Google Scholar 

  13. Embury, S., Seller, M.J., Adinolfi, M. & Polani, P.E. Neural tube defects in curly-tail mice I. Incidence, expression and similarity to the human condition. Proc. R. Soc. Lond. B 206, 85–94 (1979).

    Article  CAS  PubMed  Google Scholar 

  14. Copp, A.J. & Brook, F.A. Does lumbosacral spina bifida arise by failure of neural folding or by defective canalisation? J. med. Genet. 26, 160–166 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adinolfi, M., Beck, S.E., Embury, S., Polani, P.E. & Seller, M.J. Levels of alpha-fetoprotein in amniotic fluids of mice (curly-tail) with neural tube defects. J. med. Genet. 13, 511–513 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seller, M.J., Embury, S., Polani, P.E. & Adinolfi, M. Neural tube defects in curly-tail mice. II. Effect of maternal administration of vitamin A. Proc. R. Soc. Lond. B 206, 95–107 (1979).

    Article  CAS  PubMed  Google Scholar 

  17. Seller, M.J. & Perkins, K.J. Effect of hydroxyurea on neural tube defects in the curly-tail mouse. J. Craniofac. Genet. Dev. Biol. 3, 11–17 (1983).

    CAS  PubMed  Google Scholar 

  18. Seller, M.J. & Perkins, K.J. Effect of mitomycin C on the neural tube defects of the curly-tail mouse. Teratology 33, 305–309 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Copp, A.J., Crolla, J.A. & Brook, F.A. Prevention of spinal neural tube defects in the mouse embryo by growth retardation during neurulation. Development 104, 297–303 (1988).

    CAS  PubMed  Google Scholar 

  20. Cockroft, D.L., Brook, F.A. & Copp, A.J. Inositol deficiency increases the susceptibility to neural tube defects of genetically predisposed (curly tail) mouse embryos in vitro. Teratology 45, 223–232 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Copp, A.J., Seller, M.J. & Polani, P.E. Neural tube development in mutant (curly tail) and normal mouse embryos: the timing of posterior neuropore closure in vivo and in vitro. J. Embryol. exp. Morphol. 69, 151–167 (1982).

    CAS  PubMed  Google Scholar 

  22. Beier, D.R., Dushkin, H. & Sussman, D.J. Mapping genes in the mouse using single-strand conformation polymorphism analysis of recombinant inbred strains and interspecific crosses. Proc. natn. Acad. Sci. U.S.A. 89, 9102–9106 (1992).

    Article  CAS  Google Scholar 

  23. Kosambi, D.D. The estimation of map distances from recombination values. Ann. Eugen. 12, 172–175 (1944).

    Article  Google Scholar 

  24. King, T.R., Dove, W.F., Herrmann, B., Moser, A.R. & Shedlovsky, A. Mapping to molecular resolution in the T to H-2 region of the mouse genome with a nested set of meiotic recombinants. Proc. natn. Acad. Sci. U.S.A. 86, 222–226 (1989).

    Article  CAS  Google Scholar 

  25. Neumann, P.E. & Collins, R.L. Genetic dissection of susceptibility to audiogenic seizures in crosses of inbred mice. Proc. natn. Acad. Sci. U.S.A. 88, 5408–5412 (1991).

    Article  CAS  Google Scholar 

  26. Lathrop, G.M. et al. Strategies for multilocus linkage analysis in humans. Proc. natn. Acad. Sci. U.S.A. 81, 3443–3446 (1984).

    Article  CAS  Google Scholar 

  27. Taylor, B.A. . in Genetic Variants and Strains of the Laboratory Mouse 2nd edn (eds M. F. Lyon & A. G. Searle) 773–796 (Oxford University Press, Oxford, (1989).

    Google Scholar 

  28. Taylor, B.A. Genetic analysis of susceptibility to isoniazid-induced seizures in mice. Genetics 83, 373–377 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Neumann, P.E. Inference in linkage analysis of multifactorial traits using recombinant inbred strains. Behavior Genet. 22, 665–676 (1992).

    Article  CAS  Google Scholar 

  30. Finnell, R.H., Moon, S.P., Abbott, L.C., Golden, J.A. & Chernoff, G.F. Strain differences in heat-induced neural tube defects in mice. Teratology 33, 247–252 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Finnell, R.H., Bennett, G.D., Karras, S.B. & Mohl, V.K. Common hierarchies of susceptibility to the induction of neural tube defects in mouse embryos by valproic acid and its 4-propyl-4-pentenoic acid metabolite. Teratology 38, 313–320 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Essien, F.B. & Wannberg, S.L. Methionine but not folinic acid or vitamin B-12 alters the frequency of neural tube defects in Axd mutant mice. J. Nutr. 123, 27–34 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Estibiero, J.P., Brook, F.A. & Copp, A.J. Interaction between splotch (Sp) and curly-tail (ct) mouse mutants in the embryonic development of neural tube defects. Development 119, 113–121 (1993).

    Google Scholar 

  34. Copp, A.J. Relationship between timing of posterior neuropore closure and development of spinal neural tube defects in mutant (curly tail) and normal mouse embryos in culture. J. Embryol. exp. Morphol. 88, 39–54 (1985).

    CAS  PubMed  Google Scholar 

  35. Van Stratten, H.W.M., Hekking, J.W.M., Copp, A.J. & Bernfield, M. Deceleration and acceleration in the rate of posterior neuropore closure during neurulation in the curly tail (ct) mouse embryo. Anat. Embryol. 185, 169–174 (1992).

    Google Scholar 

  36. Copp, A.J. & Bernfield, M. Accumulation of basement membrane-associated hyaluronate is reduced in the posterior neuropore region of mutant (curly tail) mouse embryos developing spinal neural tube defects. Dev. Biol. 130, 583–590 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Copp, A.J., Brook, F.A. & Roberts, H.J. A cell-type-specific abnormality of cell proliferation in mutant (curly tail) mouse embryos developing spinal neural tube defects. Development 104, 285–295 (1988).

    CAS  PubMed  Google Scholar 

  38. Brook, F.A., Shum, A.S.W., Van Straiten, H.W.M. & Copp, A.J. Curvature of the caudal region is responsible for failure of neural tube closure in the curly tail (ct) mouse embryo. Development 113, 671–678 (1991).

    CAS  PubMed  Google Scholar 

  39. Van Stratten, H.W.M., Hekking, J.W.M., Consten, C. & Copp, A.J. Intrinsic and extrinsic factors in the mechanism of neurulation: effect of curvature of the body axis on closure of the posterior neuropore. Development 117, 1163–1172 (1993).

    Google Scholar 

  40. Eipers, P.G., Barnocski, B.L., Han, J., Carroll, A.J. & Kidd, V.J. Localization of the expressed human p58 protein kinase chromosomal gene to chromosome 1p36 and a highly related sequence to chromosome 15. Genomics 11, 621–629 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Sartor, O., Moriuchi, R., Sameshima, J.H., Severino, M., Gutkind, J.S. & Robbins, K.C. Diverse biologic properties imparted by the c-fgr proto-oncogene. J. biol. Chem. 267, 3460–3465 (1992).

    CAS  PubMed  Google Scholar 

  42. Carey, D.J. et al. Molecular cloning and characterization of N-syndecan, a novel transmembrane heparan sulfate proteogiycan. J. Cell Biol. 117, 191–201 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Chernousov, M.A. & Carey, D.J. N-syndecan (syndecan-3) from neonatal rat brain binds basic fibroblast growth factor. J. biol. Chem. 268, 16810–16814 (1993).

    CAS  PubMed  Google Scholar 

  44. Noonan, D.M. & Hassel, J.R. Proteoglycans of the basement membrane. In Molecular and Cellular Aspects of Basement Membranes (eds D. H. Rohrbach & R. Timpl) 189–210 (Academic Press, New York, 1993).

    Chapter  Google Scholar 

  45. Bernfield, M., Banerjee, S.D., Koda, J.E. & Rapraeger, A.C. Remodeling of the basement membrane as a mechanism of morphogenetic tissue interaction. In The Role of ExtraCellular Matrix in Development: The 42nd Symposium of the Society for Developmental Biology (ed. Treistad, R.) 545–572 (Alan R. Liss, Inc., New York, 1984).

    Google Scholar 

  46. Jostes, B., Walther, C. & Gruss, P. The murine paired box gene, Pax7, is expressed specifically during development of the nervous and muscular system. Mech. Devel. 33, 27–38 (1991).

    Article  Google Scholar 

  47. Frankel, W.N., Stoye, J.P., Taylor, B.A. & Coffin, J.M. A linkage map of endogenous murine leukemia proviruses. Genetics 124, 221–236 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Messer, A., Plummer, J., Maskin, P., Coffin, J.M. & Frankel, W.N. Mapping of the motor neuron degeneration (Mnd) gene, a mouse model of amyotrophic lateral sclerosis (ALS). Genomics 13, 797–802 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Cornall, R.J., Aitman, T.J., Heame, C.M. & Todd, J.A. The generation of a library of PCR-analyzed microsatellite variants for genetic mapping of the mouse genome. Genomics 10, 874–881 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Dietrich, W. et al. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423–447 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hearne, C.M. et al. Additional microsatellite markers for mouse genome mapping. Mamm. Genome 1, 273–282 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, P., Frankel, W., Letts, V. et al. Multifactorial inheritance of neural tube defects: localization of the major gene and recognition of modifiers in ct mutant mice. Nat Genet 6, 357–362 (1994). https://doi.org/10.1038/ng0494-357

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0494-357

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing