Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Blk pathway functions as a tumor suppressor in chronic myeloid leukemia stem cells

Abstract

A therapeutic strategy for treating cancer is to target and eradicate cancer stem cells (CSCs) without harming their normal stem cell counterparts. The success of this approach relies on the identification of molecular pathways that selectively regulate CSC function. Using BCR-ABL–induced chronic myeloid leukemia (CML) as a disease model for CSCs, we show that BCR-ABL downregulates the Blk gene (encoding B-lymphoid kinase) through c-Myc in leukemic stem cells (LSCs) in CML mice and that Blk functions as a tumor suppressor in LSCs but does not affect normal hematopoietic stem cells (HSCs) or hematopoiesis. Blk suppresses LSC function through a pathway involving an upstream regulator, Pax5, and a downstream effector, p27. Inhibition of this Blk pathway accelerates CML development, whereas increased activity of the Blk pathway delays CML development. Blk also suppresses the proliferation of human CML stem cells. Our results show the feasibility of selectively targeting LSCs, an approach that should be applicable to other cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Blk suppresses CML induction by BCR-ABL.
Figure 2: Blk suppresses LSCs.
Figure 3: Blk does not suppress normal HSCs.
Figure 4: Pax5 is an upstream partner of Blk in LSCs.
Figure 5: c-Myc and Ebf1 regulate Pax5 expression.
Figure 6: p27 is a downstream partner of Blk in LSCs.
Figure 7: The inhibitory effect of Blk on CML does not require Blk kinase activity.
Figure 8: BLK functions as a tumor suppressor in human CML cells.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Huntly, B.J. & Gilliland, D.G. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat. Rev. Cancer 5, 311–321 (2005).

    Article  CAS  Google Scholar 

  2. Reya, T., Morrison, S.J., Clarke, M.F. & Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  Google Scholar 

  3. Visvader, J.E. & Lindeman, G.J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer 8, 755–768 (2008).

    Article  CAS  Google Scholar 

  4. Wang, J.C. & Dick, J.E. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 15, 494–501 (2005).

    Article  CAS  Google Scholar 

  5. Chen, Y., Hu, Y., Zhang, H., Peng, C. & Li, S. Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat. Genet. 41, 783–792 (2009).

    Article  CAS  Google Scholar 

  6. Hu, Y. et al. Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph+ leukemia in mice. Proc. Natl. Acad. Sci. USA 103, 16870–16875 (2006).

    Article  CAS  Google Scholar 

  7. Melo, J.V. & Barnes, D.J. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat. Rev. Cancer 7, 441–453 (2007).

    Article  CAS  Google Scholar 

  8. Ren, R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat. Rev. Cancer 5, 172–183 (2005).

    Article  CAS  Google Scholar 

  9. Wong, S. & Witte, O.N. The BCR-ABL story: bench to bedside and back. Annu. Rev. Immunol. 22, 247–306 (2004).

    Article  CAS  Google Scholar 

  10. Druker, B.J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    Article  CAS  Google Scholar 

  11. Kantarjian, H. et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N. Engl. J. Med. 346, 645–652 (2002).

    Article  CAS  Google Scholar 

  12. Talpaz, M. et al. Dasatinib in imatinib-resistant Philadelphia chromosome–positive leukemias. N. Engl. J. Med. 354, 2531–2541 (2006).

    Article  CAS  Google Scholar 

  13. Graham, S.M. et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99, 319–325 (2002).

    Article  CAS  Google Scholar 

  14. Corbin, A.S. et al. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J. Clin. Invest. 121, 396–409 (2011).

    Article  CAS  Google Scholar 

  15. Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260 (2003).

    Article  CAS  Google Scholar 

  16. Park, I.K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).

    Article  CAS  Google Scholar 

  17. Saijo, K. et al. Essential role of Src-family protein tyrosine kinases in NF-κB activation during B cell development. Nat. Immunol. 4, 274–279 (2003).

    Article  CAS  Google Scholar 

  18. Zwollo, P. & Desiderio, S. Specific recognition of the blk promoter by the B-lymphoid transcription factor B-cell–specific activator protein. J. Biol. Chem. 269, 15310–15317 (1994).

    CAS  PubMed  Google Scholar 

  19. Nutt, S.L., Heavey, B., Rolink, A.G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    Article  CAS  Google Scholar 

  20. Xie, S., Lin, H., Sun, T. & Arlinghaus, R.B. Jak2 is involved in c-Myc induction by Bcr-Abl. Oncogene 21, 7137–7146 (2002).

    Article  CAS  Google Scholar 

  21. Sawyers, C.L., Callahan, W. & Witte, O.N. Dominant negative MYC blocks transformation by ABL oncogenes. Cell 70, 901–910 (1992).

    Article  CAS  Google Scholar 

  22. Notari, M. et al. A MAPK/HNRPK pathway controls BCR/ABL oncogenic potential by regulating MYC mRNA translation. Blood 107, 2507–2516 (2006).

    Article  CAS  Google Scholar 

  23. O'Riordan, M. & Grosschedl, R. Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity 11, 21–31 (1999).

    Article  CAS  Google Scholar 

  24. Lin, H. & Grosschedl, R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263–267 (1995).

    Article  CAS  Google Scholar 

  25. Wang, H. et al. IRF8 regulates B-cell lineage specification, commitment, and differentiation. Blood 112, 4028–4038 (2008).

    Article  CAS  Google Scholar 

  26. Wang, H. & Morse, H.C. III. IRF8 regulates myeloid and B lymphoid lineage diversification. Immunol. Res. 43, 109–117 (2009).

    Article  CAS  Google Scholar 

  27. Xia, Z.B. et al. The MLL fusion gene, MLL-AF4, regulates cyclin-dependent kinase inhibitor CDKN1B (p27kip1) expression. Proc. Natl. Acad. Sci. USA 102, 14028–14033 (2005).

    Article  CAS  Google Scholar 

  28. Andreu, E.J. et al. BCR-ABL induces the expression of Skp2 through the PI3K pathway to promote p27Kip1 degradation and proliferation of chronic myelogenous leukemia cells. Cancer Res. 65, 3264–3272 (2005).

    Article  CAS  Google Scholar 

  29. Chu, I. et al. p27 phosphorylation by Src regulates inhibition of cyclin E–Cdk2. Cell 128, 281–294 (2007).

    Article  CAS  Google Scholar 

  30. Grimmler, M. et al. Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 128, 269–280 (2007).

    Article  CAS  Google Scholar 

  31. Jonuleit, T. et al. Bcr-Abl kinase down-regulates cyclin-dependent kinase inhibitor p27 in human and murine cell lines. Blood 96, 1933–1939 (2000).

    CAS  PubMed  Google Scholar 

  32. Rangatia, J. & Bonnet, D. Transient or long-term silencing of BCR-ABL alone induces cell cycle and proliferation arrest, apoptosis and differentiation. Leukemia 20, 68–76 (2006).

    Article  CAS  Google Scholar 

  33. Oda, H., Kumar, S. & Howley, P.M. Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination. Proc. Natl. Acad. Sci. USA 96, 9557–9562 (1999).

    Article  CAS  Google Scholar 

  34. Frescas, D. & Pagano, M. Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nat. Rev. Cancer 8, 438–449 (2008).

    Article  CAS  Google Scholar 

  35. Agarwal, A. et al. Absence of SKP2 expression attenuates BCR-ABL–induced myeloproliferative disease. Blood 112, 1960–1970 (2008).

    Article  CAS  Google Scholar 

  36. Radich, J.P. et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc. Natl. Acad. Sci. USA 103, 2794–2799 (2006).

    Article  CAS  Google Scholar 

  37. Zhang, B. et al. Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell 17, 427–442 (2010).

    Article  Google Scholar 

  38. Affer, M. et al. Gene expression differences between enriched normal and chronic myelogenous leukemia quiescent stem/progenitor cells and correlations with biological abnormalities. J. Oncol. 2011, 798592 (2011).

    Article  CAS  Google Scholar 

  39. Nordon, R.E., Ginsberg, S.S. & Eaves, C.J. High-resolution cell division tracking demonstrates the FLt3-ligand-dependence of human marrow CD34+CD38− cell production in vitro. Br. J. Haematol. 98, 528–539 (1997).

    Article  CAS  Google Scholar 

  40. Heaney, N.B. et al. Bortezomib induces apoptosis in primitive chronic myeloid leukemia cells including LTC-IC and NOD/SCID repopulating cells. Blood 115, 2241–2250 (2010).

    Article  CAS  Google Scholar 

  41. Bhatia, R. et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 101, 4701–4707 (2003).

    Article  CAS  Google Scholar 

  42. Dierks, C. et al. Expansion of Bcr-Abl–positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14, 238–249 (2008).

    Article  CAS  Google Scholar 

  43. Kirstetter, P., Anderson, K., Porse, B.T., Jacobsen, S.E. & Nerlov, C. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat. Immunol. 7, 1048–1056 (2006).

    Article  CAS  Google Scholar 

  44. Scheller, M. et al. Hematopoietic stem cell and multilineage defects generated by constitutive β-catenin activation. Nat. Immunol. 7, 1037–1047 (2006).

    Article  CAS  Google Scholar 

  45. Zhao, C. et al. Loss of β-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 12, 528–541 (2007).

    Article  CAS  Google Scholar 

  46. Zhao, C. et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458, 776–779 (2009).

    Article  CAS  Google Scholar 

  47. Hu, Y., Chen, Y., Douglas, L. & Li, S. β-catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL–induced chronic myeloid leukemia. Leukemia 23, 109–116 (2009).

    Article  CAS  Google Scholar 

  48. Hu, Y. et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1–induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat. Genet. 36, 453–461 (2004).

    Article  CAS  Google Scholar 

  49. Warmuth, M. et al. The Src family kinase Hck interacts with Bcr-Abl by a kinase-independent mechanism and phosphorylates the Grb2-binding site of Bcr. J. Biol. Chem. 272, 33260–33270 (1997).

    Article  CAS  Google Scholar 

  50. Wu, J. et al. Lyn regulates BCR-ABL and Gab2 tyrosine phosphorylation and c-Cbl protein stability in imatinib-resistant chronic myelogenous leukemia cells. Blood 111, 3821–3829 (2008).

    Article  CAS  Google Scholar 

  51. Xiao, W., Hong, H., Kawakami, Y., Lowell, C.A. & Kawakami, T. Regulation of myeloproliferation and M2 macrophage programming in mice by Lyn/Hck, SHIP, and Stat5. J. Clin. Invest. 118, 924–934 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cobaleda, C., Schebesta, A., Delogu, A. & Busslinger, M. Pax5: the guardian of B cell identity and function. Nat. Immunol. 8, 463–470 (2007).

    Article  CAS  Google Scholar 

  53. Mullighan, C.G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007).

    Article  CAS  Google Scholar 

  54. Mullighan, C.G. et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 360, 470–480 (2009).

    Article  CAS  Google Scholar 

  55. Cheng, T., Rodrigues, N., Dombkowski, D., Stier, S. & Scadden, D.T. Stem cell repopulation efficiency but not pool size is governed by p27kip1. Nat. Med. 6, 1235–1240 (2000).

    Article  CAS  Google Scholar 

  56. Ramaraj, P. et al. Effect of mutational inactivation of tyrosine kinase activity on BCR/ABL-induced abnormalities in cell growth and adhesion in human hematopoietic progenitors. Cancer Res. 64, 5322–5331 (2004).

    Article  CAS  Google Scholar 

  57. Copland, M. et al. BMS-214662 potently induces apoptosis of chronic myeloid leukemia stem and progenitor cells and synergizes with tyrosine kinase inhibitors. Blood 111, 2843–2853 (2008).

    Article  CAS  Google Scholar 

  58. Li, S., Ilaria, R.L. Jr., Million, R.P., Daley, G.Q. & Van Etten, R.A. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia–like syndrome in mice but have different lymphoid leukemogenic activity. J. Exp. Med. 189, 1399–1412 (1999).

    Article  CAS  Google Scholar 

  59. Peng, C. et al. Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I–induced leukemia and suppresses leukemic stem cells. Blood 110, 678–685 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Tarakhovsky (Rockefeller University) for providing Blk−/− mice and K. Calame (Columbia University) for pGL3-Pax5 plasmid. We thank S. Deibler for editorial assistance. This work was supported by grants from the Leukemia & Lymphoma Society and the US National Institutes of Health (NIH) (R01-CA122142 and R01-CA114199) to S.L. M.A.B. was supported by the NIH (AI46629). S.L. is a Scholar of the Leukemia & Lymphoma Society.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. designed and performed experiments, analyzed data and wrote the paper. C.P., Y.H., H.L., Y.C., C.S., Z.S., J.C., L.H., A.H., P.M. and M.A.B. helped with experiments. X.Z. and D.L. helped analyze microarray data. M.R.G. helped design experiments and write the paper. S.L. designed experiments, analyzed data and wrote the paper.

Corresponding author

Correspondence to Shaoguang Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Supplementary Tables 1–3 and Supplementary Note (PDF 2462 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Peng, C., Hu, Y. et al. The Blk pathway functions as a tumor suppressor in chronic myeloid leukemia stem cells. Nat Genet 44, 861–871 (2012). https://doi.org/10.1038/ng.2350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2350

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer