Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From bench to bedside—experimental rationale for immune-specific therapies in the inflamed peripheral nerve

Abstract

Guillain–Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy are autoimmune-mediated inflammatory diseases of the PNS. In recent years, substantial progress has been made towards understanding the immune mechanisms that underlie these conditions, in large part through the study of experimental models. Here, we review the available animal models that partially mimic human Guillain–Barré syndrome and chronic inflammatory demyelinating polyneuropathy, and discuss the wide range of therapeutic approaches that have been successfully established in these models of inflammatory neuropathies. Transfer of this preclinical knowledge to patients has been far less successful, and inflammatory neuropathies are still associated with significant morbidity and mortality. We will summarize successful therapeutic trials in human autoimmune neuropathies to provide a vantage point for the transfer of experimental treatment strategies to clinical practice in immune-mediated diseases of the peripheral nerve.

Key Points

  • Experimental autoimmune neuritis in animals models many aspects of human Guillain–Barré syndrome, an acute inflammatory neuropathy

  • Animal models of demyelinating and axonal Guillain–Barré syndrome subtypes differ in pathology and disease mechanism

  • Autoreactive T lymphocytes are key orchestrators of autoimmune neuropathies, whereas macrophages and humoral immune responses mediate local tissue damage

  • Successful therapeutic strategies in models of experimental autoimmune neuritis have targeted various stages of disease pathology

  • Transfer of experimental therapies to patients has shown limited success

  • Plasma exchange and intravenous immunoglobulin remain the therapeutic mainstays in acute autoimmune neuropathies at present

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathological mechanisms of inflammatory neuropathies

Similar content being viewed by others

References

  1. Griffin JW and Sheikh K (2005) The Guillain–Barré syndromes. In Peripheral Neuropathy, vol 2, 2197–2220 (Eds Dyck PJ and Thomas PK) Philadelphia: Elsevier Saunders

    Chapter  Google Scholar 

  2. Hughes RA and Cornblath DR (2005) Guillain–Barré syndrome. Lancet 366: 1653–1666

    Article  CAS  PubMed  Google Scholar 

  3. Kieseier BC et al. (2004) Advances in understanding and treatment of immune-mediated disorders of the peripheral nervous system. Muscle Nerve 30: 131–156

    Article  CAS  PubMed  Google Scholar 

  4. Gold R et al. (2005) Experimental autoimmune neuritis. In Peripheral Neuropathy, vol 1, 609–634 (Eds Dyck PJ and Thomas PK) Philadelphia: Elsevier Saunders

    Chapter  Google Scholar 

  5. Maurer M and Gold R (2002) Animal models of immune-mediated neuropathies. Curr Opin Neurol 15: 617–622

    Article  PubMed  Google Scholar 

  6. Calida DM et al. (2000) Experimental allergic neuritis in the SJL/J mouse: induction of severe and reproducible disease with bovine peripheral nerve myelin and pertussis toxin with or without interleukin-12. J Neuroimmunol 107: 1–7

    Article  CAS  PubMed  Google Scholar 

  7. Chen X et al. (2005) BALB/c mice have more CD4+CD25+ T regulatory cells and show greater susceptibility to suppression of their CD4+CD25 responder T cells than C57BL/6 mice. J Leukoc Biol 78: 114–121

    Article  CAS  PubMed  Google Scholar 

  8. Dejaco C et al. (2006) Imbalance of regulatory T cells in human autoimmune diseases. Immunology 117: 289–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zou LP et al. (2000) P0 protein peptide 180–199 together with pertussis toxin induces experimental autoimmune neuritis in resistant C57BL/6 mice. J Neurosci Res 62: 717–721

    Article  CAS  PubMed  Google Scholar 

  10. Miletic H et al. (2005) P0(106–125) is a neuritogenic epitope of the peripheral myelin protein P0 and induces autoimmune neuritis in C57BL/6 mice. J Neuropathol Exp Neurol 64: 66–73

    Article  CAS  PubMed  Google Scholar 

  11. Ho TW et al. (1995) Guillain–Barré syndrome in northern China: relationship to Campylobacter jejuni infection and anti-glycolipid antibodies. Brain 118: 597–605

    Article  PubMed  Google Scholar 

  12. Willison HJ and Yuki N (2002) Peripheral neuropathies and anti-glycolipid antibodies. Brain 125: 2591–2625

    Article  PubMed  Google Scholar 

  13. Yuki N et al. (1990) Acute axonal polyneuropathy associated with anti-GM1 antibodies following Campylobacter enteritis. Neurology 40: 1900–1902

    Article  CAS  PubMed  Google Scholar 

  14. Jung S et al. (2004) Biphasic form of experimental autoimmune neuritis in dark Agouti rats and its oral therapy by antigen-specific tolerization. J Neurosci Res 75: 524–535

    Article  CAS  PubMed  Google Scholar 

  15. Harvey GK et al. (1987) Chronic experimental allergic neuritis: an electrophysiological and histological study in the rabbit. J Neurol Sci 81: 215–225

    Article  CAS  PubMed  Google Scholar 

  16. Salomon B et al. (2001) Development of spontaneous autoimmune peripheral polyneuropathy in B7-2-deficient NOD mice. J Exp Med 194: 677–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yuki N (2005) Carbohydrate mimicry: a new paradigm of autoimmune diseases. Curr Opin Immunol 17: 577–582

    Article  CAS  PubMed  Google Scholar 

  18. Willison HJ (2005) The immunobiology of Guillain–Barré syndromes. J Peripher Nerv Syst 10: 94–112

    Article  CAS  PubMed  Google Scholar 

  19. Khalili-Shirazi A et al. (1993) Antibody responses to P0 and P2 myelin proteins in Guillain–Barré syndrome and chronic idiopathic demyelinating polyradiculoneuropathy. J Neuroimmunol 46: 245–251

    Article  CAS  PubMed  Google Scholar 

  20. Vriesendorp FJ et al. (1991) Kinetics of anti-peripheral nerve myelin antibody in patients with Guillain–Barré syndrome treated and not treated with plasmapheresis. Arch Neurol 48: 858–861

    Article  CAS  PubMed  Google Scholar 

  21. Hadden RD et al. (2002) Accumulation of immunoglobulin across the 'blood-nerve barrier' in spinal roots in adoptive transfer experimental autoimmune neuritis. Neuropathol Appl Neurobiol 28: 489–497

    Article  CAS  PubMed  Google Scholar 

  22. Kanda T et al. (2003) Sera from Guillain–Barré patients enhance leakage in blood-nerve barrier model. Neurology 60: 301–306

    Article  PubMed  Google Scholar 

  23. Halstead SK et al. (2004) Anti-disialoside antibodies kill perisynaptic Schwann cells and damage motor nerve terminals via membrane attack complex in a murine model of neuropathy. Brain 127: 2109–2123

    Article  PubMed  Google Scholar 

  24. Zhang G et al. (2004) Anti-ganglioside antibody-mediated neuronal cytotoxicity and its protection by intravenous immunoglobulin: implications for immune neuropathies. Brain 127: 1085–1100

    Article  CAS  PubMed  Google Scholar 

  25. Dilley A et al. (2003) Effects on axonal conduction of anti-ganglioside sera and sera from patients with Guillain–Barré syndrome. J Neuroimmunol 139: 133–140

    Article  CAS  PubMed  Google Scholar 

  26. Buchwald B et al. (2001) Combined pre- and postsynaptic action of IgG antibodies in Miller Fisher syndrome. Neurology 56: 67–74

    Article  CAS  PubMed  Google Scholar 

  27. Hartung HP et al. (1987) Guillain–Barré syndrome: activated complement components C3a and C5a in CSF. Neurology 37: 1006–1009

    Article  CAS  PubMed  Google Scholar 

  28. O'Hanlon GM et al. (2001) Anti-GQ1b ganglioside antibodies mediate complement-dependent destruction of the motor nerve terminal. Brain 124: 893–906

    Article  CAS  PubMed  Google Scholar 

  29. Stoll G et al. (1991) Presence of the terminal complement complex (C5b-9) precedes myelin degradation in immune-mediated demyelination of the rat peripheral nervous system. Ann Neurol 30: 147–155

    Article  CAS  PubMed  Google Scholar 

  30. Yan WX et al. (2000) Passive transfer of demyelination by serum or IgG from chronic inflammatory demyelinating polyneuropathy patients. Ann Neurol 47: 765–775

    Article  CAS  PubMed  Google Scholar 

  31. Hahn AF et al. (1993) Adoptive transfer of experimental allergic neuritis in the immune suppressed host. Acta Neuropathol (Berl) 86: 596–601

    Article  CAS  Google Scholar 

  32. Krogsgaard M and Davis MM (2005) How T cells 'see' antigen. Nat Immunol 6: 239–245

    Article  CAS  PubMed  Google Scholar 

  33. De Libero G and Mori L (2005) Recognition of lipid antigens by T cells. Nat Rev Immunol 5: 485–496

    Article  CAS  PubMed  Google Scholar 

  34. Csurhes PA et al. (2005) Increased circulating T cell reactivity to GM1 ganglioside in patients with Guillain–Barré syndrome. J Clin Neurosci 12: 409–415

    Article  CAS  PubMed  Google Scholar 

  35. Hartung HP et al. (1990) T cell activation in Guillain–Barré syndrome and in MS: elevated serum levels of soluble IL-2 receptors. Neurology 40: 215–218

    Article  CAS  PubMed  Google Scholar 

  36. Kieseier BC et al. (2002) Chemokines and chemokine receptors in inflammatory demyelinating neuropathies: a central role for IP-10. Brain 125: 823–834

    Article  PubMed  Google Scholar 

  37. Nicoletti F et al. (2005) Macrophage migration inhibitory factor (MIF) seems crucially involved in Guillain–Barré syndrome and experimental allergic neuritis. J Neuroimmunol 168: 168–174

    Article  CAS  PubMed  Google Scholar 

  38. Kiefer R et al. (2000) Enhanced B7 costimulatory molecule expression in inflammatory human sural nerve biopsies. J Neurol Neurosurg Psychiatry 69: 362–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Butcher EC and Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272: 60–66

    Article  CAS  PubMed  Google Scholar 

  40. Enders U et al. (1998) The role of the very late antigen-4 and its counterligand vascular cell adhesion molecule-1 in the pathogenesis of experimental autoimmune neuritis of the Lewis rat. Brain 121: 1257–1266

    Article  PubMed  Google Scholar 

  41. Archelos JJ et al. (1998) Role of the leukocyte-adhesion molecule L-selectin in experimental autoimmune encephalomyelitis. J Neurol Sci 159: 127–134

    Article  CAS  PubMed  Google Scholar 

  42. Previtali SC et al. (2001) Role of integrins in the peripheral nervous system. Prog Neurobiol 64: 35–49

    Article  CAS  PubMed  Google Scholar 

  43. Kieseier BC et al. (1998) Matrix metalloproteinases MMP-9 and MMP-7 are expressed in experimental autoimmune neuritis and the Guillain–Barré syndrome. Ann Neurol 43: 427–434

    Article  CAS  PubMed  Google Scholar 

  44. Hughes PM et al. (1998) Matrix metalloproteinase expression during experimental autoimmune neuritis. Brain 121: 481–494

    Article  PubMed  Google Scholar 

  45. Hafer-Macko CE et al. (1996) Immune attack on the Schwann cell surface in acute inflammatory demyelinating polyneuropathy. Ann Neurol 39: 625–635

    Article  CAS  PubMed  Google Scholar 

  46. Griffin JW et al. (1996) Pathology of the motor-sensory axonal Guillain–Barré syndrome. Ann Neurol 39: 17–28

    Article  CAS  PubMed  Google Scholar 

  47. Bonetti B et al. (1993) Human peripheral nerve macrophages in normal and pathological conditions. J Neurol Sci 118: 158–168

    Article  CAS  PubMed  Google Scholar 

  48. Hu W et al. (2003) Cyclo-oxygenases and prostaglandins in acute inflammatory demyelination of the peripheral nerve. Neurology 61: 1774–1779

    Article  CAS  PubMed  Google Scholar 

  49. Redford EJ et al. (1995) Vascular changes and demyelination induced by the intraneural injection of tumour necrosis factor. Brain 118: 869–878

    Article  PubMed  Google Scholar 

  50. Gold R et al. (1997) T-cell apoptosis in autoimmune diseases: termination of inflammation in the nervous system and other sites with specialized immune-defense mechanisms. Trends Neurosci 20: 399–404

    Article  CAS  PubMed  Google Scholar 

  51. Kiefer R et al. (1998) Sequential expression of transforming growth factor-beta1 by T-cells, macrophages, and microglia in rat spinal cord during autoimmune inflammation. J Neuropathol Exp Neurol 57: 385–395

    Article  CAS  PubMed  Google Scholar 

  52. Créange A et al. (1998) Circulating transforming growth factor beta 1 (TGF-beta1) in Guillain–Barré syndrome: decreased concentrations in the early course and increase with motor function. J Neurol Neurosurg Psychiatry 64: 162–165

    Article  PubMed  PubMed Central  Google Scholar 

  53. Whitacre CC et al. (1991) Oral tolerance in experimental autoimmune encephalomyelitis. III: evidence for clonal anergy. J Immunol 147: 2155–2163

    CAS  PubMed  Google Scholar 

  54. Chen Y et al. (1995) Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 376: 177–180

    Article  CAS  PubMed  Google Scholar 

  55. Chen Y et al. (1994) Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265: 1237–1240

    Article  CAS  PubMed  Google Scholar 

  56. Illa I et al. (1995) Acute axonal Guillain–Barré syndrome with IgG antibodies against motor axons following parenteral gangliosides. Ann Neurol 38: 218–224

    Article  CAS  PubMed  Google Scholar 

  57. Nobile-Orazio E (2005) Treatment of dys-immune neuropathies. J Neurol 252: 385–395

    Article  CAS  PubMed  Google Scholar 

  58. Gross ML et al. (1983) The treatment of experimental allergic neuritis by plasma exchange. J Neurol Sci 61: 149–160

    Article  CAS  PubMed  Google Scholar 

  59. Harvey GK et al. (1989) IgG immunoadsorption in experimental allergic neuritis: effect on antibody levels and clinical course. J Neurol Neurosurg Psychiatry 52: 865–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gabriel CM et al. (1997) Human immunoglobulin ameliorates rat experimental autoimmune neuritis. Brain 120: 1533–1540

    Article  PubMed  Google Scholar 

  61. Miyagi F et al. (1997) Fc portion of intravenous immunoglobulin suppresses the induction of experimental allergic neuritis. J Neuroimmunol 78: 127–131

    Article  CAS  PubMed  Google Scholar 

  62. Korn T et al. (2001) Suppression of experimental autoimmune neuritis by leflunomide. Brain 124: 1791–1802

    Article  CAS  PubMed  Google Scholar 

  63. Koller H et al. (2005) Chronic inflammatory demyelinating polyneuropathy. N Engl J Med 352: 1343–1356

    Article  PubMed  Google Scholar 

  64. Zhu J et al. (1998) Cytokine production and the pathogenesis of experimental autoimmune neuritis and Guillain–Barré syndrome. J Neuroimmunol 84: 40–52

    Article  CAS  PubMed  Google Scholar 

  65. Said G and Hontebeyrie-Joskowicz M (1992) Nerve lesions induced by macrophage activation. Res Immunol 143: 589–599

    Article  CAS  PubMed  Google Scholar 

  66. Zhu Y et al. (2001) Suppression of autoimmune neuritis in IFN-γ receptor-deficient mice. Exp Neurol 169: 472–478

    Article  CAS  PubMed  Google Scholar 

  67. Redford EJ et al. (1997) A combined inhibitor of matrix metalloproteinase activity and tumour necrosis factor-α processing attenuates experimental autoimmune neuritis. Brain 120: 1895–1905

    Article  PubMed  Google Scholar 

  68. Kiefer R et al. (2001) The role of macrophages in immune-mediated damage to the peripheral nervous system. Prog Neurobiol 64: 109–127

    Article  CAS  PubMed  Google Scholar 

  69. Pollard JD et al. (2005) Principles of immunotherapy. In Peripheral Neuropathy, vol 1, 635–648 (Eds Dyck PJ and Thomas PK) Philadelphia: Elsevier Saunders

    Chapter  Google Scholar 

  70. Leger JM and Behin A (2005) Multifocal motor neuropathy. Curr Opin Neurol 18: 567–573

    Article  PubMed  Google Scholar 

  71. Umapathi T et al. Immunosuppressant and immunomodulatory treatment for multifocal motor neuropathy. Cochrane Database of Systematic Reviews 2002, Issue 3. Art. No.: CD003217.pub2. DOI: 10.1002/14651858.CD003217.pub2

  72. Hughes RA (2005) Treatment of peripheral nerve disorders. Curr Opin Neurol 18: 554–556

    Article  PubMed  Google Scholar 

  73. Gold R et al. (2007) Drug insight: the use of intravenous immunoglobulin in neurology—therapeutic considerations and practical issues. Nat Clin Pract Neurol 3: 36–44

    Article  CAS  PubMed  Google Scholar 

  74. Lehmann HC et al. (2006) Plasma exchange in neuroimmunological disorders. Part 1: rationale and treatment of inflammatory central nervous system disorders. Arch Neurol 63: 930–935

    Article  PubMed  Google Scholar 

  75. van Koningsveld R et al. (2004) Effect of methylprednisolone when added to standard treatment with intravenous immunoglobulin for Guillain–Barré syndrome: randomised trial. Lancet 363: 192–196

    Article  CAS  PubMed  Google Scholar 

  76. Mehndiratta MM and Hughes RA. Corticosteroids for chronic inflammatory demyelinating polyradiculoneuropathy. Cochrane Database of Systematic Reviews 2002, Issue 1. Art. No.: CD002062. DOI: 10.1002/14651858.CD002062

    Google Scholar 

  77. Lopate G et al. (2005) Treatment of chronic inflammatory demyelinating polyneuropathy with high-dose intermittent intravenous methylprednisolone. Arch Neurol 62: 249–254

    Article  PubMed  Google Scholar 

  78. Pavesi G et al. (2002) Long-term efficacy of interferon-alpha in chronic inflammatory demyelinating polyneuropathy. J Neurol 249: 777–779

    Article  PubMed  Google Scholar 

  79. Gorson KC et al. (1998) Treatment of chronic inflammatory demyelinating polyneuropathy with interferon-alpha 2a. Neurology 50: 84–87

    Article  CAS  PubMed  Google Scholar 

  80. Meriggioli MN and Rowin J (2000) Chronic inflammatory demyelinating polyneuropathy after treatment with interferon-α. Muscle Nerve 23: 433–435

    Article  CAS  PubMed  Google Scholar 

  81. Creange A et al. (1998) Treatment of Guillain–Barré syndrome with interferon-β. Lancet 352: 368–369

    Article  CAS  PubMed  Google Scholar 

  82. Pritchard J et al. (2003) A randomized controlled trial of recombinant interferon-beta 1a in Guillain–Barré syndrome. Neurology 61: 1282–1284

    Article  CAS  PubMed  Google Scholar 

  83. Chin RL et al. (2003) Etanercept (Enbrel) therapy for chronic inflammatory demyelinating polyneuropathy. J Neurol Sci 210: 19–21

    Article  CAS  PubMed  Google Scholar 

  84. Cocito D et al. (2005) Multifocal motor neuropathy during treatment with infliximab. J Peripher Nerv Syst 10: 386–387

    Article  PubMed  Google Scholar 

  85. Dyck PJ et al. (1985) Combined azathioprine and prednisone in chronic inflammatory-demyelinating polyneuropathy. Neurology 35: 1173–1176

    Article  CAS  PubMed  Google Scholar 

  86. Hughes RAC et al. Cytotoxic drugs and interferons for chronic inflammatory demyelinating polyradiculoneuropathy. Cochrane Database of Systematic Reviews 2004, Issue 4. Art. No.: CD003280.pub2. DOI: 10.1002/14651858.CD003280.pub2

    Google Scholar 

  87. Fialho D et al. (2006) Treatment of chronic inflammatory demyelinating polyradiculoneuropathy with methotrexate. J Neurol Neurosurg Psychiatry 77: 544–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mahattanakul W et al. (1996) Treatment of chronic inflammatory demyelinating polyneuropathy with cyclosporin-A. J Neurol Neurosurg Psychiatry 60: 185–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Matsuda M et al. (2004) Cyclosporin A in treatment of refractory patients with chronic inflammatory demyelinating polyradiculoneuropathy. J Neurol Sci 224: 29–35

    Article  CAS  PubMed  Google Scholar 

  90. Visudtibhan A et al. (2005) Cyclosporine in chronic inflammatory demyelinating polyradiculoneuropathy. Pediatr Neurol 33: 368–372

    Article  PubMed  Google Scholar 

  91. Gorson KC et al. (2004) Efficacy of mycophenolate mofetil in patients with chronic immune demyelinating polyneuropathy. Neurology 63: 715–717

    Article  CAS  PubMed  Google Scholar 

  92. Gladstone DE et al. (2005) High-dose cyclophosphamide results in long-term disease remission with restoration of a normal quality of life in patients with severe refractory chronic inflammatory demyelinating polyneuropathy. J Peripher Nerv Syst 10: 11–16

    Article  CAS  PubMed  Google Scholar 

  93. Renaud S et al. (2003) Rituximab in the treatment of polyneuropathy associated with anti-MAG antibodies. Muscle Nerve 27: 611–615

    Article  CAS  PubMed  Google Scholar 

  94. Renaud S et al. (2006) High-dose rituximab and anti-MAG-associated polyneuropathy. Neurology 66: 742–744

    Article  CAS  PubMed  Google Scholar 

  95. Gono T et al. (2006) Rituximab therapy in chronic inflammatory demyelinating polyradiculoneuropathy with anti-SGPG IgM antibody. J Clin Neurosci 13: 683–687

    Article  CAS  PubMed  Google Scholar 

  96. Ruegg SJ et al. (2004) Rituximab stabilizes multifocal motor neuropathy increasingly less responsive to IVIg. Neurology 63: 2178–2179

    Article  PubMed  Google Scholar 

  97. Broglio L and Lauria G (2005) Worsening after rituximab treatment in anti-mag neuropathy. Muscle Nerve 32: 378–379

    Article  PubMed  Google Scholar 

  98. Browning JL (2006) B cells move to centre stage: novel opportunities for autoimmune disease treatment. Nat Rev Drug Discov 5: 564–576

    Article  CAS  PubMed  Google Scholar 

  99. Hirst C et al. (2006) Remission of chronic inflammatory demyelinating polyneuropathy after alemtuzumab (Campath 1H). J Neurol Neurosurg Psychiatry 77: 800–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Avivi I et al. (2004) Neurological complications following alemtuzumab-based reduced-intensity allogeneic transplantation. Bone Marrow Transplant 34: 137–142

    Article  CAS  PubMed  Google Scholar 

  101. Wilson JR et al. (1994) Sensorimotor neuropathy resembling CIDP in patients receiving FK506. Muscle Nerve 17: 528–532

    Article  CAS  PubMed  Google Scholar 

  102. Deretzi G et al. (1999) Nasal administration of recombinant rat IL-4 ameliorates ongoing experimental autoimmune neuritis and inhibits demyelination. J Autoimmun 12: 81–89

    Article  CAS  PubMed  Google Scholar 

  103. Miyamoto K et al. (1999) The action mechanism of cyclooxygenase-2 inhibitor for treatment of experimental allergic neuritis. Muscle Nerve 22: 1704–1709

    Article  CAS  PubMed  Google Scholar 

  104. Abbas N et al. (2000) Protective effect of Rolipram in experimental autoimmune neuritis: protection is associated with down-regulation of IFN-gamma and inflammatory chemokines as well as up-regulation of IL-4 in peripheral nervous system. Autoimmunity 32: 93–99

    Article  CAS  PubMed  Google Scholar 

  105. Gabriel CM et al. (1998) Induction of experimental autoimmune neuritis with peripheral myelin protein-22. Brain 121: 1895–1902

    Article  PubMed  Google Scholar 

  106. McCombe PA et al. (1999) Effects of cyclosporin A treatment on clinical course and inflammatory cell apoptosis in experimental autoimmune encephalomyelitis induced in Lewis rats by inoculation with myelin basic protein. J Neuroimmunol 97: 60–69

    Article  CAS  PubMed  Google Scholar 

  107. Hoffman PM et al. (1980) Experimental allergic neuritis. I: rat strain differences in the response to bovine myelin antigens. Brain Res 195: 355–362

    Article  CAS  PubMed  Google Scholar 

  108. Lassmann H et al. (1991) Chronic relapsing experimental allergic neuritis induced by repeated transfer of P2-protein reactive T cell lines. Brain 114: 429–442

    Article  PubMed  Google Scholar 

  109. Taylor WA and Hughes RA (1985) Experimental allergic neuritis induced in SJL mice by bovine P2. J Neuroimmunol 8: 153–157

    Article  CAS  PubMed  Google Scholar 

  110. Abromson-Leeman S et al. (1995) Experimental autoimmune peripheral neuritis induced in BALB/c mice by myelin basic protein-specific T cell clones. J Exp Med 182: 587–592

    Article  CAS  PubMed  Google Scholar 

  111. Kadlubowski M and Hughes RA (1980) The neuritogenicity and encephalitogenicity of P2 in the rat, guinea-pig and rabbit. J Neurol Sci 48: 171–178

    Article  CAS  PubMed  Google Scholar 

  112. Stoll G et al. (1986) Relation of clinical, serological, morphological, and electrophysiological findings in galactocerebroside-induced experimental allergic neuritis. J Neurol Neurosurg Psychiatry 49: 258–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yuki N et al. (2001) Animal model of axonal Guillain–Barré syndrome induced by sensitization with GM1 ganglioside. Ann Neurol 49: 712–720

    Article  CAS  PubMed  Google Scholar 

  114. Kusunoki S et al. (1996) Experimental sensory neuropathy induced by sensitization with ganglioside GD1b. Ann Neurol 39: 424–431

    Article  CAS  PubMed  Google Scholar 

  115. Snyder DH et al. (1977) Attempts to induce chronic experimental allergic neuritis in strain 13 and Hartley guinea pigs. J Neuropathol Exp Neurol 36: 488–498

    Article  CAS  PubMed  Google Scholar 

  116. Eylar EH et al. (1982) Induction of allergic neuritis in rhesus monkeys. J Neuroimmunol 3: 91–98

    Article  CAS  PubMed  Google Scholar 

  117. Bril V et al. (1996) Pilot trial of immunoglobulin versus plasma exchange in patients with Guillain–Barré syndrome. Neurology 46: 100–103

    Article  CAS  PubMed  Google Scholar 

  118. French et al. (1987) Efficacy of plasma exchange in Guillain–Barré syndrome. Ann Neurol 22: 753–761

  119. Raphael JC et al. Plasma exchange for Guillain–Barré syndrome. Cochrane Database of Systematic Reviews 2001, Issue 2. Art. No.: CD001798. DOI: 10.1002/14651858.CD001798

    Google Scholar 

  120. The et al. (1997) Appropriate number of plasma exchanges in Guillain–Barré syndrome. Ann Neurol 41: 298–306

  121. The et al. (1985) Plasmapheresis and acute Guillain–Barré syndrome. Neurology 35: 1096–1104

  122. van der Meché FG et al. (1993) Intravenous immunoglobulin versus plasma exchange in Guillain–Barré syndrome. Neurology 43: 2730

    Article  PubMed  Google Scholar 

  123. Dyck PJ et al. (1986) Plasma exchange in chronic inflammatory demyelinating polyradiculoneuropathy. N Engl J Med 314: 461–465

    Article  CAS  PubMed  Google Scholar 

  124. Hahn AF et al. (1996) Plasma-exchange therapy in chronic inflammatory demyelinating polyneuropathy: a double-blind, sham-controlled, cross-over study. Brain 119: 1055–1066

    Article  PubMed  Google Scholar 

  125. Raphael JC et al. (2001) Intravenous immune globulins in patients with Guillain–Barré syndrome and contraindications to plasma exchange: 3 days versus 6 days. J Neurol Neurosurg Psychiatry 71: 235–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cornblath DR et al. (1991) Treatment of chronic inflammatory demyelinating polyneuropathy with intravenous immunoglobulin. Ann Neurol 30: 104–106

    Article  CAS  PubMed  Google Scholar 

  127. Hahn AF et al. (1996) Intravenous immunoglobulin treatment in chronic inflammatory demyelinating polyneuropathy: a double-blind, placebo-controlled, cross-over study. Brain 119: 1067–1077

    Article  PubMed  Google Scholar 

  128. Mendell JR et al. (2001) Randomized controlled trial of IVIg in untreated chronic inflammatory demeylinating polyradiculoneuropathy. Neurology 56: 445–449

    Article  CAS  PubMed  Google Scholar 

  129. van Doorn P et al. (1990) High-dose intravenous immunoglobulin treatment in chronic inflammatory demyelinating polyneuropathy: a double-blind, placebo-controlled, crossover study. Neurology 40: 209–212

    Article  CAS  PubMed  Google Scholar 

  130. Federico P et al. (2000) Multifocal motor neuropathy improved by IVIg: randomized, double-blind, placebo-controlled study. Neurology 55: 1256–1262

    Article  CAS  PubMed  Google Scholar 

  131. van Doorn PA and van der Meché FG (2000) IVIg treatment improves multifocal motor neuropathy: easy to start but difficult to stop. Neurology 55: 1246–1247

    Article  CAS  PubMed  Google Scholar 

  132. Leger JM et al. (2001) Intravenous immunoglobulin therapy in multifocal motor neuropathy: a double-blind, placebo-controlled study. Brain 124: 145–153

    Article  CAS  PubMed  Google Scholar 

  133. Hughes RAC and van der Meché FG. Corticosteroids for Guillain–Barré syndrome (Archive). Cochrane Database of Systematic Reviews 2000, Issue 2. Art. No.: CD001446. DOI: 10.1002/14651858.CD001446

    Google Scholar 

  134. Hughes R et al. (2001) Randomized controlled trial of intravenous immunoglobulin versus oral prednisolone in chronic inflammatory demyelinating polyradiculopathy. Ann Neurol 50: 195–201

    Article  CAS  PubMed  Google Scholar 

  135. Gorson KC et al. (1997) Improvement following interferon-alpha 2A in chronic inflammatory demyelinating polyneuropathy. Neurology 48: 777–780

    Article  CAS  PubMed  Google Scholar 

  136. Schaller B et al. (2001) Successful treatment of Guillain–Barré syndrome with combined administration of interferon-β1a and intravenous immunoglobulin. Eur Neurol 46: 167–168

    Article  CAS  PubMed  Google Scholar 

  137. Martina IS et al. (1999) Chronic motor neuropathies: response to interferon-β1a after failure of conventional therapies. J Neurol Neurosurg Psychiatry 66: 197–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hadden R et al. (1999) Randomized trial of interferon β-1a in chronic inflammatory demyelinating polyradiculoneuropathy. Neurology 53: 57–61

    Article  CAS  PubMed  Google Scholar 

  139. Hodgkinson SJ et al. (1990) Cyclosporin A in the treatment of chronic demyelinating polyradiculoneuropathy. J Neurol Neurosurg Psychiatry 53: 327–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Umapathi T and Hughes R (2002) Mycophenolate in treatment-resistant inflammatory neuropathies. Eur J Neurol 9: 683–685

    Article  CAS  PubMed  Google Scholar 

  141. Pestronk A et al. (1988) A treatable multifocal motor neuropathy with antibodies to GM1 ganglioside. Ann Neurol 24: 73–78

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the German Research Foundation (GRK320) and the Research Commission of the Heinrich-Heine University of Düsseldorf (FoKo; to BC Kieseier and G Meyer zu Hörste).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd C Kieseier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Complete overview of published therapeutic approaches in experimental autoimmune neuritis. (DOC 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer zu Hörste, G., Hartung, HP. & Kieseier, B. From bench to bedside—experimental rationale for immune-specific therapies in the inflamed peripheral nerve. Nat Rev Neurol 3, 198–211 (2007). https://doi.org/10.1038/ncpneuro0452

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0452

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing