Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunopathogenesis and immunotherapy of multiple sclerosis

Abstract

Multiple sclerosis (MS) is a chronic disease of the CNS that is characterized by inflammation, demyelination and axonal injury. Although the etiology of MS is still unknown, many findings point toward a central role for the immune system in the pathogenesis of the disease. This hypothesis is strongly supported by the beneficial effects of immunomodulatory and immunosuppressive therapy on disease activity. Over the past few years, substantial progress has been made in deciphering the immune response in MS. Although animal models have advanced our knowledge of basic mechanisms of immune responses in the CNS, recent studies have also highlighted the differences between MS and its animal equivalent, experimental autoimmune encephalomyelitis. New immunotherapeutic agents have been developed and evaluated in clinical trials. Here, we review current knowledge of the immunopathogenesis of MS and corresponding animal models of disease, and discuss new immunointerventional treatment strategies based on changing pathogenetic concepts.

Key Points

  • The etiology of multiple sclerosis (MS) is unknown, but many findings indicate a central role for the immune system in the disease pathogenesis, and both genes and environmental factors influence the risk of developing disease

  • The most extensively studied animal model of MS is experimental autoimmune encephalomyelitis, a T-cell-mediated inflammatory disease of the CNS with variable degrees of demyelination and axonal damage

  • Traditionally, MS has been considered primarily to be a T-cell-mediated disease, but the importance of B lymphocytes in the pathogenesis of MS is beginning to be appreciated

  • There are important differences between the pathology of MS in humans and EAE in animals, particularly with regard to the involvement of B cells and CD8+ T cells

  • Targeting of the immune response is the most widely used treatment approach for MS; strategies range from nonselective immunosuppression to highly specific immune intervention

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunopathogenesis of multiple sclerosis.
Figure 2: Immune intervention strategies currently used or in development for the treatment of multiple sclerosis.

Similar content being viewed by others

References

  1. Noseworthy JH et al. (2000) Multiple sclerosis. N Engl J Med 343: 938–952

    Article  CAS  PubMed  Google Scholar 

  2. Sadovnick AD et al. (1996) Evidence for genetic basis of multiple sclerosis. The Canadian Collaborative Study Group. Lancet 347: 1728–1730

    Article  CAS  PubMed  Google Scholar 

  3. Olerup O and Hillert J (1991) HLA class II-associated genetic susceptibility in multiple sclerosis: a critical evaluation. Tissue Antigens 38: 1–15

    Article  CAS  PubMed  Google Scholar 

  4. Gale CR and Martyn CN (1995) Migrant studies in multiple sclerosis. Prog Neurobiol 47: 425–448

    Article  CAS  PubMed  Google Scholar 

  5. Kurtzke JF (2000) Epidemiology of multiple sclerosis: does this really point toward an etiology? Lectio Doctoralis. Neurol Sci 21: 383–403

    Article  CAS  PubMed  Google Scholar 

  6. Buljevac D et al. (2002) Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain 125: 952–960

    Article  CAS  PubMed  Google Scholar 

  7. Cserr HF and Knopf PM (1992) Cervical lymphatics, the blood–brain barrier and the immunoreactivity of the brain: a new view. Immunol Today 13: 507–512

    Article  CAS  PubMed  Google Scholar 

  8. Heppner FL et al. (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11: 146–152

    Article  CAS  PubMed  Google Scholar 

  9. Greter M et al. (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11: 328–334

    Article  CAS  PubMed  Google Scholar 

  10. Neumann H et al. (1995) Induction of MHC class I genes in neurons. Science 269: 549–552

    Article  CAS  PubMed  Google Scholar 

  11. Dandekar AA et al. (2001) Axonal damage is T cell mediated and occurs concomitantly with demyelination in mice infected with a neurotropic coronavirus. J Virol 75: 6115–6120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kawakami N et al. (2005) Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion. J Exp Med 201: 1805–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alter A et al. (2003) Determinants of human B cell migration across brain endothelial cells. J Immunol 170: 4497–4505

    Article  CAS  PubMed  Google Scholar 

  14. Uccelli A et al. (2005) Unveiling the enigma of the CNS as a B-cell fostering environment. Trends Immunol 26: 254–259

    Article  CAS  PubMed  Google Scholar 

  15. Zamvil SS and Steinman L (1990) The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol 8: 579–621

    Article  CAS  PubMed  Google Scholar 

  16. Linington C et al. (1988) Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 130: 443–454

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Huseby ES et al. (2001) A pathogenic role for myelin-specific CD8+ T cells in a model for multiple sclerosis. J Exp Med 194: 669–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fujinami RS and Oldstone MB (1985) Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 230: 1043–1045

    Article  CAS  PubMed  Google Scholar 

  19. Wucherpfennig KW and Strominger JL (1995) Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80: 695–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hemmer B et al. (1997) Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J Exp Med 185: 1651–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lehmann PV et al. (1993) Determinant spreading and the dynamics of the autoimmune T-cell repertoire. Immunol Today 14: 203–208

    Article  CAS  PubMed  Google Scholar 

  22. Vanderlugt CL and Miller SD (2002) Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2: 85–95

    Article  CAS  PubMed  Google Scholar 

  23. Stohlman SA and Hinton DR (2001) Viral induced demyelination. Brain Pathol 11: 92–106

    Article  CAS  PubMed  Google Scholar 

  24. Richt JA et al. (1994) Borna disease virus-specific T cells protect against or cause immunopathological Borna disease. J Exp Med 179: 1467–1473

    Article  CAS  PubMed  Google Scholar 

  25. Ramakrishna C et al. (2002) Mechanisms of central nervous system viral persistence: the critical role of antibody and B cells. J Immunol 168: 1204–1211

    Article  CAS  PubMed  Google Scholar 

  26. Kerschensteiner M et al. (2003) Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol 53: 292–304

    Article  CAS  PubMed  Google Scholar 

  27. Moalem G et al. (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5: 49–55

    Article  CAS  PubMed  Google Scholar 

  28. Jones TB et al. (2004) Passive or active immunization with myelin basic protein impairs neurological function and exacerbates neuropathology after spinal cord injury in rats. J Neurosci 24: 3752–3761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hohlfeld R and Wiendl H (2001) The ups and downs of multiple sclerosis therapeutics. Ann Neurol 49: 281–284

    Article  CAS  PubMed  Google Scholar 

  30. Gay FW et al. (1997) The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis: identification and characterization of the primary demyelinating lesion. Brain 120: 1461–1483

    Article  PubMed  Google Scholar 

  31. Cannella B and Raine CS (1995) The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 37: 424–435

    Article  CAS  PubMed  Google Scholar 

  32. Trebst C and Ransohoff RM (2001) Investigating chemokines and chemokine receptors in patients with multiple sclerosis: opportunities and challenges. Arch Neurol 58: 1975–1980

    Article  CAS  PubMed  Google Scholar 

  33. Trapp BD et al. (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338: 278–285

    Article  CAS  PubMed  Google Scholar 

  34. Kuhlmann T et al. (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125: 2202–2212

    Article  PubMed  Google Scholar 

  35. Lucchinetti C et al. (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47: 707–717

    Article  CAS  PubMed  Google Scholar 

  36. Lucchinetti CF et al. (2002) A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain 125: 1450–1461

    Article  PubMed  Google Scholar 

  37. Barnett MH and Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55: 458–468

    Article  PubMed  Google Scholar 

  38. Sospedra M and Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23: 683–747

    Article  CAS  PubMed  Google Scholar 

  39. Pette M et al. (1990) Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology 40: 1770–1776

    Article  CAS  PubMed  Google Scholar 

  40. Madsen LS et al. (1999) A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor. Nat Genet 23: 343–347

    Article  CAS  PubMed  Google Scholar 

  41. Hemmer B et al. (1996) Cytokine phenotype of human autoreactive T cell clones specific for the immunodominant myelin basic protein peptide (83–99). J Neurosci Res 45: 852–862

    Article  CAS  PubMed  Google Scholar 

  42. Oksenberg JR et al. (1990) Limited heterogeneity of rearranged T-cell receptor V alpha transcripts in brains of multiple sclerosis patients. Nature 345: 344–346

    Article  CAS  PubMed  Google Scholar 

  43. Babbe H et al. (2000) Clonal expansions of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192: 393–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jacobsen M et al. (2002) Oligoclonal expansion of memory CD8+ T cells in the cerebrospinal fluid from multiple sclerosis patients. Brain 125: 538–550

    Article  PubMed  Google Scholar 

  45. Skulina C et al. (2004) Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood. Proc Natl Acad Sci USA 101: 2428–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cross AH et al. (2001) B cells and antibodies in CNS demyelinating disease. J Neuroimmunol 112: 1–14

    Article  CAS  PubMed  Google Scholar 

  47. Qin Y et al. (1998) Clonal expansion and somatic hypermutation of VH genes of B cells from cerebrospinal fluid in multiple sclerosis. J Clin Invest 102: 1045–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baranzini SE et al. (1999) B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J Immunol 163: 5133–5144

    CAS  PubMed  Google Scholar 

  49. Colombo M et al. (2000) Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J Immunol 164: 2782–2789

    Article  CAS  PubMed  Google Scholar 

  50. Colombo M et al. (2003) Maintenance of B lymphocyte-related clones in the cerebrospinal fluid of multiple sclerosis patients. Eur J Immunol 33: 3433–3438

    Article  CAS  PubMed  Google Scholar 

  51. Krumbholz M et al. (2005) BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med 201: 195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cepok S et al. (2005) Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain 128: 1667–1676

    Article  PubMed  Google Scholar 

  53. Corcione A et al. (2004) Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc Natl Acad Sci USA 101: 11064–11069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cepok S et al. (2003) The immune response at onset and during recovery from Borrelia burgdorferi meningoradiculitis. Arch Neurol 60: 849–855

    Article  PubMed  Google Scholar 

  55. Lennon VA et al. (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202: 473–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lennon VA et al. (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364: 2106–2112

    Article  CAS  PubMed  Google Scholar 

  57. Bjartmar C and Trapp BD (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14: 271–278

    Article  CAS  PubMed  Google Scholar 

  58. Levin LI et al. (2005) Temporal relationship between elevation of epstein–barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. JAMA 293: 2496–2500

    Article  CAS  PubMed  Google Scholar 

  59. Alotaibi S et al. (2004) Epstein–Barr virus in pediatric multiple sclerosis. JAMA 291: 1875–1879

    Article  CAS  PubMed  Google Scholar 

  60. Reindl M et al. (1999) Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain 122: 2047–2056

    Article  PubMed  Google Scholar 

  61. Cepok S et al. (2005) Identification of Epstein–Barr virus proteins as putative targets of the immune response in multiple sclerosis. J Clin Invest 115: 1352–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Soldan SS et al. (1997) Association of human herpes virus 6 (HHV-6) with multiple sclerosis: increased IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA. Nat Med 3: 1394–1397

    Article  CAS  PubMed  Google Scholar 

  63. Hartung HP et al. (2002) Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360: 2018–2025

    Article  PubMed  Google Scholar 

  64. Yong VW (2002) Differential mechanisms of action of interferon-β and glatiramer acetate in MS. Neurology 59: 802–808

    Article  CAS  PubMed  Google Scholar 

  65. Neuhaus O et al. (2000) Multiple sclerosis: comparison of copolymer-1-reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci USA 97: 7452–7457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Weber MS et al. (2004) Multiple sclerosis: glatiramer acetate inhibits monocyte reactivity in vitro and in vivo. Brain 127: 1370–1378

    Article  PubMed  Google Scholar 

  67. [No authors listed] (1993) Interferon β-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFN-β Multiple Sclerosis Study Group. Neurology 43: 655–661

  68. Jacobs LD et al. (1996) Intramuscular interferon β-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol 39: 285–294

    Article  CAS  PubMed  Google Scholar 

  69. [No authors listed] (1998) Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon β-1a Subcutaneously in Multiple Sclerosis) Study Group. Lancet 352: 1498–1504

  70. Johnson KP et al. (1995) Copolymer 1 reduces relapse rate and improves disability in relapsing–remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45: 1268–1276

    Article  CAS  PubMed  Google Scholar 

  71. [No authors listed] (1998) Placebo-controlled multicentre randomised trial of interferon β-1b in treatment of secondary progressive multiple sclerosis. European Study Group on interferon β-1b in secondary progressive MS. Lancet 352: 1491–1497

  72. Panitch H et al. (2004) Interferon β-1b in secondary progressive MS: results from a 3-year controlled study. Neurology 63: 1788–1795

    Article  PubMed  CAS  Google Scholar 

  73. Youssef S et al. (2002) The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420: 78–84

    Article  CAS  PubMed  Google Scholar 

  74. Vollmer T et al. (2004) Oral simvastatin treatment in relapsing–remitting multiple sclerosis. Lancet 363: 1607–1608

    Article  CAS  PubMed  Google Scholar 

  75. Metz LM et al. (2004) Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol 55: 756

    Article  PubMed  Google Scholar 

  76. Burt RK et al. (2005) Hematopoietic stem cell transplantation for multiple sclerosis. Arch Neurol 62: 860–864

    Article  PubMed  Google Scholar 

  77. van Oosten BW et al. (1996) A phase II trial of anti-CD4 antibodies in the treatment of multiple sclerosis. Mult Scler 1: 339–342

    Article  CAS  PubMed  Google Scholar 

  78. Cree BA et al. (2005) An open label study of the effects of rituximab in neuromyelitis optica. Neurology 64: 1270–1272

    Article  CAS  PubMed  Google Scholar 

  79. Stuve O et al. (2005) Clinical stabilization and effective B cell depletion in the cerebrospinal fluid and peripheral blood in a patient with fulminant relapsing remitting multiple sclerosis. Arch Neurol 62: 1620–1623

    PubMed  Google Scholar 

  80. Coles AJ et al. (1999) Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol 46: 296–304

    Article  CAS  PubMed  Google Scholar 

  81. Bielekova B et al. (2004) Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon β. Proc Natl Acad Sci USA 101: 8705–8708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. [No authors listed] (1999) The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology 53: 457–465

  83. Kappos L et al. (2000) Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nat Med 6: 1176–1182

    Article  CAS  PubMed  Google Scholar 

  84. Bielekova B et al. (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 6: 1167–1175

    Article  CAS  PubMed  Google Scholar 

  85. Garren H et al. (2001) Combination of gene delivery and DNA vaccination to protect from and reverse Th1 autoimmune disease via deviation to the Th2 pathway. Immunity 15: 15–22

    Article  CAS  PubMed  Google Scholar 

  86. Lobell A et al. (2003) Suppressive DNA vaccination in myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis involves a T1-biased immune response. J Immunol 170: 1806–1813

    Article  CAS  PubMed  Google Scholar 

  87. Vandenbark AA et al. (1996) Treatment of multiple sclerosis with T-cell receptor peptides: results of a double-blind pilot trial. Nat Med 2: 1109–1115

    Article  CAS  PubMed  Google Scholar 

  88. Engelhardt B and Ransohoff RM (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26: 485–495

    Article  CAS  PubMed  Google Scholar 

  89. Polman CH et al. (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354: 899–910

    Article  CAS  PubMed  Google Scholar 

  90. Adelman B et al. (2005) Natalizumab and progressive multifocal leukoencephalopathy. N Engl J Med 353: 432–433

    Article  CAS  PubMed  Google Scholar 

  91. Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23: 127–159

    Article  CAS  PubMed  Google Scholar 

  92. Pluchino S et al. (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436: 266–271

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

B Hemmer, S Nessler and D Zhou were supported by grants from the Deutsche Forschungs-gemeinschaft, the Gemeinnützige Hertie-Stiftung and the German MS Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Hemmer.

Ethics declarations

Competing interests

S Nessler and D Zhou declared they have no competing interests.

Bernhard Hemmer has received honoraria for lecturing, travel expenses for attending meetings, and financial support for research from Biogen Idec, Sanofi-Aventis, Schering, Serono, Teva Pharmaceuticals, Wyeth and Amgen. Bernd Kieseier has received honoraria for lecturing, travel expenses for attending meetings, and financial support for research from Bayer, Biogen Idec, Sanofi-Aventis, Schering, Serono and Teva Pharmaceuticals. Hans-Peter Hartung has received honoraria for lectures and consulting from Bayer, Biogen Idec, Sanofi-Aventis, Schering, Serono, Teva Pharmaceuticals, Wyeth and Amgen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmer, B., Nessler, S., Zhou, D. et al. Immunopathogenesis and immunotherapy of multiple sclerosis. Nat Rev Neurol 2, 201–211 (2006). https://doi.org/10.1038/ncpneuro0154

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing