Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: HDL metabolism as a target for novel therapies

Abstract

Plasma concentrations of HDL cholesterol are inversely correlated with risk of coronary heart disease, and low HDL-cholesterol levels are a risk factor even in patients aggressively treated for LDL reduction. Thus, there is great interest in targeting HDL cholesterol therapeutically. The existing approaches are limited in their ability to raise HDL-cholesterol levels, and there has, therefore, been a major focus on the development of novel therapies. The goal of new approaches is to either raise HDL-cholesterol levels or improve the function of HDL. Here, the current status of the development of novel therapies targeted toward HDL metabolism is reviewed.

Key Points

  • Current clinical approaches to treating low HDL-cholesterol levels are inadequate and new therapies are needed that either increase HDL-cholesterol levels or improve HDL function

  • HDL protects against atherosclerosis by promoting the process of reverse cholesterol transport, as well as potentially through additional mechanisms such as anti-inflammatory, antioxidative, antithrombotic, and nitric-oxide-promoting properties

  • Promotion of macrophage cholesterol efflux is a desirable target for development of novel therapies and might be achieved through targeting the liver X receptor or the peroxisome proliferative activated receptors

  • Apolipoprotein A-I mimetic peptides present a potential biological method for increasing HDL function as an approach to reducing atherosclerosis

  • The effect of a novel therapeutic approach on the plasma HDL-cholesterol level alone is not an adequate predictor of the potential clinical benefit

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Grundy SM et al. (2004) Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 110: 227–239

    PubMed  Google Scholar 

  2. Cannon CP et al. (2004) Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 350: 1495–1504

    CAS  PubMed  Google Scholar 

  3. LaRosa JC et al. (2005) Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med 352: 1425–1435

    CAS  PubMed  Google Scholar 

  4. Ashen MD and Blumenthal RS (2005) Clinical practice: low HDL cholesterol levels. N Engl J Med 353: 1252–1260

    CAS  PubMed  Google Scholar 

  5. Lewis GF and Rader DJ (2005) New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res 96: 1221–1232

    CAS  PubMed  Google Scholar 

  6. Timmins JM et al. (2005) Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J Clin Invest 115: 1333–1342

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brunham LR et al. (2006) Intestinal ABCA1 directly contributes to HDL biogenesis in vivo . J Clin Invest 116: 1052–1062

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hobbs HH and Rader DJ (1999) ABC1: connecting yellow tonsils, neuropathy, and very low HDL. J Clin Invest 104: 1015–1017

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang N et al. (2004) ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci USA 101: 9774–9779

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kennedy MA et al. (2005) ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab 1: 121–131

    CAS  PubMed  Google Scholar 

  11. Li AC and Glass CK (2004) PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res 45: 2161–2173

    CAS  PubMed  Google Scholar 

  12. Jian B et al. (1998) Scavenger receptor class B type I as a mediator of cellular cholesterol efflux to lipoproteins and phospholipid acceptors. J Biol Chem 273: 5599–5606

    CAS  PubMed  Google Scholar 

  13. Zhang Y (2005) Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo . J Clin Invest 115: 2870–2874

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwartz CC et al. (2004) Lipoprotein cholesteryl ester production transfer and output in vivo in humans. J Lipid Res 45: 1594–1607

    CAS  PubMed  Google Scholar 

  15. Barter PJ et al. (2004) Antiinflammatory properties of HDL. Circ Res 95: 764–772

    CAS  PubMed  Google Scholar 

  16. Moore RE et al. (2005) Increased atherosclerosis in mice lacking apolipoprotein A-I attributable to both impaired reverse cholesterol transport and increased inflammation. Circ Res 97: 763–771

    CAS  PubMed  Google Scholar 

  17. Ansell BJ et al. (2003) Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation 108: 2751–2756

    CAS  PubMed  Google Scholar 

  18. Mineo C et al. (2006) Endothelial and antithrombotic actions of HDL. Circ Res 98: 1352–1364

    CAS  PubMed  Google Scholar 

  19. Baigent C et al. (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366: 1267–1278

    CAS  PubMed  Google Scholar 

  20. Robins SJ and Bloomfield HE (2006) Fibric acid derivatives in cardiovascular disease prevention: results from the large clinical trials. Curr Opin Lipidol 17: 431–439

    CAS  PubMed  Google Scholar 

  21. Shepherd J et al. (2005) Nicotinic acid in the management of dyslipidaemia associated with diabetes and metabolic syndrome: a position paper developed by a European Consensus Panel. Curr Med Res Opin 21: 665–682

    CAS  PubMed  Google Scholar 

  22. Carlson LA (2005) Nicotinic acid: the broad-spectrum lipid drug: a 50th anniversary review. J Intern Med 258: 94–114

    CAS  PubMed  Google Scholar 

  23. Brown ML et al. (1989) Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 342: 448–451

    CAS  PubMed  Google Scholar 

  24. Inazu A et al. (1990) Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med 323: 1234–1238

    CAS  PubMed  Google Scholar 

  25. Barter PJ et al. (2003) Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol 23: 160–167

    CAS  PubMed  Google Scholar 

  26. de Grooth GJ et al. (2004) A review of CETP and its relation to atherosclerosis. J Lipid Res 45: 1967–1974

    CAS  PubMed  Google Scholar 

  27. de Grooth GJ et al. (2002) Efficacy and safety of a novel cholesteryl ester transfer protein inhibitor JTT-705 in humans: a randomized phase II dose-response study. Circulation 105: 2159–2165

    CAS  PubMed  Google Scholar 

  28. Kuivenhoven JA (2005) Effectiveness of inhibition of cholesteryl ester transfer protein by JTT-705 in combination with pravastatin in type II dyslipidemia. Am J Cardiol 95: 1085–1088

    CAS  PubMed  Google Scholar 

  29. Clark RW et al. (2004) Raising high-density lipoprotein in humans through inhibition of cholesteryl ester transfer protein: an initial multidose study of torcetrapib. Arterioscler Thromb Vasc Biol 24: 490–497

    CAS  PubMed  Google Scholar 

  30. Brousseau ME et al. (2004) Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med 350: 1505–1515

    CAS  PubMed  Google Scholar 

  31. Davidson M et al. (2006) Efficacy and safety of a novel cholesteryl ester transfer protein inhibitor torcetrapib when administered with and without atorvastatin to subjects with a low level of high-density lipoprotein cholesterol. J Am Coll Cardiol 48: 1782–1790

    PubMed  Google Scholar 

  32. Thuren T et al. (2005) Torcetrapib combined with atorvastatin raises HDL-C, lowers LDL-C, and is well tolerated: Results from a phase 2 dose-ranging clinical trial [abstract]. Circulation 112 (Suppl): aSII–I179

    Google Scholar 

  33. Bays H et al. (2005) Torcetrapib/atorvastatin combination therapy. Expert Rev Cardiovasc Ther 3: 789–820

    CAS  PubMed  Google Scholar 

  34. ClinicalTrials.gov [http://www.clinicaltrials.gov/ct/show/NCT00134264?order=3]

  35. Ikewaki K et al. (1993) Delayed catabolism of high density lipoprotein apolipoproteins A-I and A-II in human cholesteryl ester transfer protein deficiency. J Clin Invest 92: 1650–1658

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ikewaki K et al. (1995) Increased catabolic rate of low density lipoproteins in humans with cholesteryl ester transfer protein deficiency. J Clin Invest 96: 1573–1581

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Brousseau ME et al. (2005) Effects of cholesteryl ester transfer protein inhibition on high-density lipoprotein subspecies apolipoprotein A-I metabolism and fecal sterol excretion. Arterioscler Thromb Vasc Biol 25: 1057–1064

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Millar JS et al. (2006) Effects of the cholesteryl ester transfer protein inhibitor torcetrapib on apolipoprotein B100 metabolism in humans. Arterioscler Thromb Vasc Biol 26: 1350–1356

    CAS  PubMed  Google Scholar 

  39. Kee P (2006) Effect of inhibiting cholesteryl ester transfer protein on the kinetics of high-density lipoprotein cholesteryl ester transport in plasma: in vivo studies in rabbits. Arterioscler Thromb Vasc Biol 26: 884–890

    CAS  PubMed  Google Scholar 

  40. Ishigami M et al. (1994) Large and cholesteryl ester-rich high-density lipoproteins in cholesteryl ester transfer protein (CETP) deficiency can not protect macrophages from cholesterol accumulation induced by acetylated low-density lipoproteins. J Biochem (Tokyo) 116: 257–262

    CAS  Google Scholar 

  41. Matsuura F et al. (2006) HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway. J Clin Invest 116: 1435–1442

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rader DJ (2004) Inhibition of cholesteryl ester transfer protein activity: a new therapeutic approach to raising high-density lipoprotein. Curr Atheroscler Rep 6: 398–405

    PubMed  Google Scholar 

  43. Hirano K et al. (1997) Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan: marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity. Arterioscler Thromb Vasc Biol 17: 1053–1059

    CAS  PubMed  Google Scholar 

  44. Hirano K et al. (1995) Atherosclerotic disease in marked hyperalphalipoproteinemia. Arterioscler Thromb Vasc Biol 15: 1849–1856

    CAS  PubMed  Google Scholar 

  45. Sakai N et al. (1995) Frequency of exon 15 missense mutation (442D:G) in cholesteryl ester transfer protein gene in hyperalphalipoproteinemic Japanese subjects. Atherosclerosis 114: 139–145

    CAS  PubMed  Google Scholar 

  46. Moriyama Y et al. (1998) A low prevalence of coronary heart disease among subjects with increased high-density lipoprotein cholesterol levels including those with plasma cholesteryl ester transfer protein deficiency. Prev Med 27: 659–667

    CAS  PubMed  Google Scholar 

  47. Curb JD et al. (2004) A prospective study of HDL-C and cholesteryl ester transfer protein gene mutations and the risk of coronary heart disease in the elderly. J Lipid Res 45: 948–953

    CAS  PubMed  Google Scholar 

  48. Boekholdt SM and Thompson JF (2003) Natural genetic variation as a tool in understanding the role of CETP in lipid levels and disease. J Lipid Res 44: 1080–1093

    CAS  PubMed  Google Scholar 

  49. Boekholdt SM et al. (2005) Cholesteryl ester transfer protein TaqIB variant, high-density lipoprotein cholesterol levels, cardiovascular risk, and efficacy of pravastatin treatment: individual patient meta-analysis of 13,677 subjects. Circulation 111: 278–287

    CAS  PubMed  Google Scholar 

  50. Boekholdt SM et al. (2004) Plasma levels of cholesteryl ester transfer protein and the risk of future coronary artery disease in apparently healthy men and women: the prospective EPIC (European Prospective Investigation into Cancer and nutrition)-Norfolk population study. Circulation 110: 1418–1423

    CAS  PubMed  Google Scholar 

  51. Joyce CW et al. (2002) The ATP binding cassette transporter A1 (ABCA1) modulates the development of aortic atherosclerosis in C57BL/6 and apoE-knockout mice. Proc Natl Acad Sci USA 99: 407–412

    CAS  PubMed  Google Scholar 

  52. Linsel-Nitschke P and Tall AR (2005) HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat Rev Drug Discov 4: 193–205

    CAS  PubMed  Google Scholar 

  53. Naik SU et al. (2006) Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo . Circulation 113: 90–97

    CAS  PubMed  Google Scholar 

  54. Joseph SB et al. (2002) Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci USA 99: 7604–7609

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Levin N et al. (2005) Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler Thromb Vasc Biol 25: 135–142

    CAS  PubMed  Google Scholar 

  56. Groot PH et al. (2005) Synthetic LXR agonists increase LDL in CETP species. J Lipid Res 46: 2182–2191

    CAS  PubMed  Google Scholar 

  57. Chinetti G et al. (2001) PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7: 53–58

    CAS  PubMed  Google Scholar 

  58. Li AC et al. (2004) Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha beta/delta and gamma. J Clin Invest 114: 1564–1576

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Szapary PO et al. (2006) Effects of pioglitazone on lipoproteins inflammatory markers and adipokines in nondiabetic patients with metabolic syndrome. Arterioscler Thromb Vasc Biol 26: 182–188

    CAS  PubMed  Google Scholar 

  60. Oliver WR Jr et al. (2001) A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci USA 98: 5306–5311

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sprecher DL et al. (2006) Triglyceride: high-density lipoprotein cholesterol effects in healthy subjects administered a peroxisome proliferator activated receptor δ agonist. Arterioscler Thromb Vasc Biol [doi:10.1161/01.ATV.0000252790.70572.0c]

    CAS  PubMed  Google Scholar 

  62. Tunaru S et al. (2003) PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat Med 9: 352–355

    CAS  PubMed  Google Scholar 

  63. Pike NB (2005) Flushing out the role of GPR109A (HM74A) in the clinical efficacy of nicotinic acid. J Clin Invest 115: 3400–3403

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Benyo Z et al. (2005) GPR109A (PUMA-G/HM74A) mediates nicotinic acid-induced flushing. J Clin Invest 115: 3634–3640

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cheng K et al. (2006) Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. Proc Natl Acad Sci USA 103: 6682–6687

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tonstad S (2006) Rimonabant: a cannabinoid receptor blocker for the treatment of metabolic and cardiovascular risk factors. Nutr Metab Cardiovasc Dis 16: 156–162

    CAS  PubMed  Google Scholar 

  67. Pi-Sunyer FX et al. (2006) Effect of rimonabant a cannabinoid-1 receptor blocker on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295: 761–775

    CAS  PubMed  Google Scholar 

  68. Despres JP et al. (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353: 2121–2134

    CAS  PubMed  Google Scholar 

  69. Van Gaal LF et al. (2005) Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365: 1389–1397

    CAS  PubMed  Google Scholar 

  70. Horvath TL (2006) The unfolding cannabinoid story on energy homeostasis: central or peripheral site of action? Int J Obes (Lond) 30 (Suppl 1): S30–S32

    CAS  Google Scholar 

  71. Bramlage P et al. (2006) Cardiovascular risk management by blocking the endocannabinoid system. Exp Clin Endocrinol Diabetes 114: 75–81

    CAS  PubMed  Google Scholar 

  72. Gelfand EV and Cannon CP (2006) Rimonabant: a selective blocker of the cannabinoid CB1 receptors for the management of obesity smoking cessation and cardiometabolic risk factors. Expert Opin Investig Drugs 15: 307–315

    CAS  PubMed  Google Scholar 

  73. Plump A et al. (1994) Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci USA 91: 9607–9611

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Tangirala RK et al. (1999) Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-I in mice. Circulation 100: 1816–1822

    CAS  PubMed  Google Scholar 

  75. Zhang Y (2003) Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo . Circulation 108: 661–663

    CAS  PubMed  Google Scholar 

  76. Nissen SE et al. (2003) Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 290: 2292–2300

    CAS  PubMed  Google Scholar 

  77. Rader DJ (2003) High-density lipoproteins as an emerging therapeutic target for atherosclerosis. JAMA 290: 2322–2324

    CAS  PubMed  Google Scholar 

  78. Navab M et al. (2005) Apolipoprotein A-I mimetic peptides. Arterioscler Thromb Vasc Biol 25: 1325–1331

    CAS  PubMed  Google Scholar 

  79. Navab M et al. (2002) Oral administration of an Apo A-I mimetic Peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation 105: 290–292

    CAS  PubMed  Google Scholar 

  80. Navab M et al. (2004) Oral D-4F causes formation of pre-beta high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation 109: 3215–3220

    CAS  PubMed  Google Scholar 

  81. Nofer JR and Assmann G (2005) Atheroprotective effects of high-density lipoprotein-associated lysosphingolipids. Trends Cardiovasc Med 15: 265–271

    CAS  PubMed  Google Scholar 

  82. Tolle M et al. (2005) Immunomodulator FTY720 induces eNOS-dependent arterial vasodilatation via the lysophospholipid receptor S1P3. Circ Res 96: 913–920

    PubMed  Google Scholar 

  83. Pfizer News (online 2 December 2006) In interests of patient safety, pfizer stops all torcetrapib clinical trials; company has notified fda and is in the process of notifying all clinical investigators and other regulatory authorities (press release) [http://mediaroom.pfizer.com/index.php?s=press_releases&item=130] (accessed 12 December 2006)

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Dr Rader has interactions with companies that are involved in discovering new therapies targeted to HDL. He has received grant/research support from AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, Bruin Pharma, GlaxoSmithKline, KOS Pharmaceuticals, Merck and Co., Pfizer, Schering-Plough and Takeda.

He is/has been a consultant for Abbott, AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, GlaxoSmithKline, Johnson & Johnson, KOS Pharmaceuticals, Merck and Co., Merck–Schering Plough, Pfizer, Reliant, sanofi-aventis, Schering-Plough, Takeda and Wyeth.

He has been on the speakers bureau/received honoraria from Abbott, AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, GlaxoSmithKline, Johnson & Johnson, KOS Pharmaceuticals, Merck and Co., Merck–Schering Plough, Pfizer, Reliant, sanofi-aventis, Schering-Plough, Takeda and Wyeth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rader, D. Mechanisms of Disease: HDL metabolism as a target for novel therapies. Nat Rev Cardiol 4, 102–109 (2007). https://doi.org/10.1038/ncpcardio0768

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpcardio0768

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing