Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A ketosynthase homolog uses malonyl units to form esters in cervimycin biosynthesis

Abstract

Ketosynthases produce the carbon backbones of a vast number of biologically active polyketides by catalyzing Claisen condensations of activated acyl and malonyl building blocks. Here we report that a ketosynthase homolog from Streptomyces tendae, CerJ, unexpectedly forms malonyl esters during the biosynthesis of cervimycin, a glycoside antibiotic against methicillin-resistant Staphylococcus aureus (MRSA). Deletion of cerJ yielded a substantially more active cervimycin variant lacking the malonyl side chain, and in vitro biotransformations revealed that CerJ is capable of transferring malonyl, methylmalonyl and dimethylmalonyl units onto the glycoside. According to phylogenetic analyses and elucidation of the crystal structure, CerJ is functionally and structurally positioned between the ketosynthase catalyzing Claisen condensations and acyl-ACP shuttles, and it features a noncanonical catalytic triad. Site-directed mutagenesis and structures of CerJ in complex with substrates not only allowed us to establish a model for the reaction mechanism but also provided insights into the evolution of this important subclass of the thiolase superfamily.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cervimycin structures and results of knocking out CerJ.
Figure 2: Catalysis of CerJ in comparison to typical KS III.
Figure 3: Phylogenetic analysis of CerJ and homologs.
Figure 4: 3D structures of CerJ.
Figure 5: Model for the ping-pong bi-bi mechanism of CerJ.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. Engl. 48, 4688–4716 (2009).

    Article  CAS  Google Scholar 

  2. Staunton, J. & Weissman, K.J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416 (2001).

    Article  CAS  Google Scholar 

  3. Rix, U., Fischer, C., Remsing, L.L. & Rohr, J. Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat. Prod. Rep. 19, 542–580 (2002).

    Article  CAS  Google Scholar 

  4. Khosla, C. Structures and mechanisms of polyketide synthases. J. Org. Chem. 74, 6416–6420 (2009).

    Article  CAS  Google Scholar 

  5. Fischbach, M.A. & Walsh, C.T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).

    Article  CAS  Google Scholar 

  6. Hertweck, C., Luzhetskyy, A., Rebets, Y. & Bechthold, A. Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat. Prod. Rep. 24, 162–190 (2007).

    Article  CAS  Google Scholar 

  7. Austin, M.B. & Noel, J.P. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79–110 (2003).

    Article  CAS  Google Scholar 

  8. Tsay, J.T., Oh, W., Larson, T.J., Jackowski, S. & Rock, C.O. Isolation and characterization of the β-ketoacyl-acyl carrier protein synthase III gene (fabH) from Escherichia coli K-12. J. Biol. Chem. 267, 6807–6814 (1992).

    CAS  PubMed  Google Scholar 

  9. Pan, H. et al. Crystal structure of the priming β-ketosynthase from the R1128 polyketide biosynthetic pathway. Structure 10, 1559–1568 (2002).

    Article  CAS  Google Scholar 

  10. Heath, R.J. & Rock, C.O. The claisen condensation in biology. Nat. Prod. Rep. 19, 581–596 (2002).

    Article  CAS  Google Scholar 

  11. Herold, K. et al. Cervimycin A-D: a polyketide glycoside complex from a cave bacterium can defeat vancomycin resistance. Chem. Eur. J. 11, 5523–5530 (2005).

    Article  CAS  Google Scholar 

  12. Herold, K., Xu, Z.L., Gollmick, F.A., Gräfe, U. & Hertweck, C. Biosynthesis of cervimycin C, an aromatic polyketide antibiotic bearing an unusual dimethylmalonyl moiety. Org. Biomol. Chem. 2, 2411–2414 (2004).

    Article  CAS  Google Scholar 

  13. Moore, B.S. & Hertweck, C. Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat. Prod. Rep. 19, 70–99 (2002).

    Article  CAS  Google Scholar 

  14. Bao, W., Sheldon, P.J. & Hutchinson, C.R. Purification and properties of the Streptomyces peucetius DpsC β-ketoacyl:acyl carrier protein synthase III that specifies the propionate-starter unit for type II polyketide biosynthesis. Biochemistry 38, 9752–9757 (1999).

    Article  CAS  Google Scholar 

  15. Bao, W., Sheldon, P.J., Wendt-Pienkowski, E. & Hutchinson, C.R. The Streptomyces peucetius dpsC gene determines the choice of starter unit in biosynthesis of the daunorubicin polyketide. J. Bacteriol. 181, 4690–4695 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Möllmann, U. et al. HKI10311129, neues Antibiotikum, Verfahren zu dessen Herstellung und Arzneimittel enthaltend HKI10311129. German patent vol. DE 10 2004 010 219 B4 2007.02.01 (2004).

  17. Neises, B. & Steglich, W. Simple method for the esterification of carboxylic acids. Angew. Chem. Int. Edn Engl. 17, 522–524 (1978).

    Article  Google Scholar 

  18. Mathieu, M. et al. The 2.8 Å crystal structure of peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: a five-layered αβαβα structure constructed from two core domains of identical topology. Structure 2, 797–808 (1994).

    Article  CAS  Google Scholar 

  19. Holm, L. & Rosenstrom, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  Google Scholar 

  20. Davies, C., Heath, R.J., White, S.W. & Rock, C.O. The 1.8 Å crystal structure and active-site architecture of β-ketoacyl-acyl carrier protein synthase III (FabH) from Escherichia coli. Structure 8, 185–195 (2000).

    Article  CAS  Google Scholar 

  21. Gajiwala, K.S. et al. Crystal structures of bacterial FabH suggest a molecular basis for the substrate specificity of the enzyme. FEBS Lett. 583, 2939–2946 (2009).

    Article  CAS  Google Scholar 

  22. Oke, M. et al. The Scottish Structural Proteomics Facility: targets, methods and outputs. J. Struct. Funct. Genomics 11, 167–180 (2010).

    Article  CAS  Google Scholar 

  23. Qiu, X. et al. Crystal structure and substrate specificity of the β-ketoacyl-acyl carrier protein synthase III (FabH) from Staphylococcus aureus. Protein Sci. 14, 2087–2094 (2005).

    Article  CAS  Google Scholar 

  24. Brown, A.K. et al. Probing the mechanism of the Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein synthase III mtFabH: factors influencing catalysis and substrate specificity. J. Biol. Chem. 280, 32539–32547 (2005).

    Article  CAS  Google Scholar 

  25. Xu, Z., Schenk, A. & Hertweck, C. Molecular analysis of the benastatin biosynthetic pathway and genetic engineering of altered fatty acid-polyketide hybrids. J. Am. Chem. Soc. 129, 6022–6030 (2007).

    Article  CAS  Google Scholar 

  26. Xu, Z., Metsä-Ketelä, M. & Hertweck, C. Ketosynthase III as a gateway to engineering the biosynthesis of antitumoral benastatin derivatives. J. Biotechnol. 140, 107–113 (2009).

    Article  CAS  Google Scholar 

  27. Bera, A.K. et al. Structure of PqsD, a Pseudomonas quinolone signal biosynthetic enzyme, in complex with anthranilate. Biochemistry 48, 8644–8655 (2009).

    Article  CAS  Google Scholar 

  28. White, S.W., Zheng, J., Zhang, Y.M. & Rock The structural biology of type II fatty acid biosynthesis. Annu. Rev. Biochem. 74, 791–831 (2005).

    Article  CAS  Google Scholar 

  29. Qiu, X. et al. Refined structures of β-ketoacyl-acyl carrier protein synthase III. J. Mol. Biol. 307, 341–356 (2001).

    Article  CAS  Google Scholar 

  30. He, Q.L. et al. Dissection of two acyl-transfer reactions centered on acyl-S-carrier protein intermediates for incorporating 5-chloro-6-methyl-O-methylsalicyclic acid into chlorothricin. ChemBioChem 10, 813–819 (2009).

    Article  CAS  Google Scholar 

  31. Serre, L., Verbree, E.C., Dauter, Z., Stuitje, A.R. & Derewenda, Z.S. The Escherichia coli malonyl-CoA:acyl carrier protein transacylase at 1.5-Å resolution. Crystal structure of a fatty acid synthase component. J. Biol. Chem. 270, 12961–12964 (1995).

    Article  CAS  Google Scholar 

  32. Pojer, F., Li, S.M. & Heide, L. Molecular cloning and sequence analysis of the clorobiocin biosynthetic gene cluster: new insights into the biosynthesis of aminocoumarin antibiotics. Microbiology 148, 3901–3911 (2002).

    Article  CAS  Google Scholar 

  33. Wang, Z.X., Li, S.M. & Heide, L. Identification of the coumermycin A1 biosynthetic gene cluster of Streptomyces rishiriensis DSM 40489. Antimicrob. Agents Chemother. 44, 3040–3048 (2000).

    Article  CAS  Google Scholar 

  34. Dürr, C. et al. Biosynthesis of the terpene phenalinolactone in Streptomyces sp. Tu6071: Analysis of the gene cluster and generation of derivatives. Chem. Biol. 13, 365–377 (2006).

    Article  Google Scholar 

  35. Daum, M. et al. Organisation of the biosynthetic gene cluster and tailoring enzymes in the biosynthesis of the tetracyclic quinone glycoside antibiotic polyketomycin. ChemBioChem 10, 1073–1083 (2009).

    Article  CAS  Google Scholar 

  36. Jia, X.Y. et al. Genetic characterization of the chlorothricin gene cluster as a model for spirotetronate antibiotic biosynthesis. Chem. Biol. 13, 575–585 (2006).

    Article  CAS  Google Scholar 

  37. Weitnauer, G. et al. Biosynthesis of the orthosomycin antibiotic avilamycin A: deductions from the molecular analysis of the avi biosynthetic gene cluster of Streptomyces viridochromogenes Tu57 and production of new antibiotics. Chem. Biol. 8, 569–581 (2001).

    Article  CAS  Google Scholar 

  38. Ahlert, J. et al. The calicheamicin gene cluster and its iterative type I enediyne PKS. Science 297, 1173–1176 (2002).

    Article  CAS  Google Scholar 

  39. Anderle, C. et al. Biosynthesis of clorobiocin: investigation of the transfer and methylation of the pyrrolyl-2-carboxyl moiety. Arch. Microbiol. 187, 227–237 (2007).

    Article  CAS  Google Scholar 

  40. Balibar, C.J., Garneau-Tsodikova, S. & Walsh, C.T. Covalent CouN7 enzyme intermediate for acyl group shuttling in aminocoumarin biosynthesis. Chem. Biol. 14, 679–690 (2007).

    Article  CAS  Google Scholar 

  41. Strieter, E.R., Vaillancourt, F.H. & Walsh, C.T. CmaE: a transferase shuttling aminoacyl groups between carrier protein domains in the coronamic acid biosynthetic pathway. Biochemistry 46, 7549–7557 (2007).

    Article  CAS  Google Scholar 

  42. Fullone, M.R. et al. Mutational analysis and homology modelling of SyrC, the aminoacyltransferase in the biosynthesis of syringomycin. Biochem. Biophys. Res. Commun. 364, 201–207 (2007).

    Article  CAS  Google Scholar 

  43. Freitag, A., Wemakor, E., Li, S.M. & Heide, L. Acyl transfer in clorobiocin biosynthesis: involvement of several proteins in the transfer of the pyrrole-2-carboxyl moiety to the deoxysugar. ChemBioChem 6, 2316–2325 (2005).

    Article  CAS  Google Scholar 

  44. Kwon, H.J. et al. C-O bond formation by polyketide synthases. Science 297, 1327–1330 (2002).

    Article  CAS  Google Scholar 

  45. Haapalainen, A.M., Merilainen, G. & Wierenga, R.K. The thiolase superfamily: condensing enzymes with diverse reaction specificities. Trends Biochem. Sci. 31, 64–71 (2006).

    Article  CAS  Google Scholar 

  46. Igual, J.C., Gonzalez-Bosch, C., Dopazo, J. & Perez-Ortin, J.E. Phylogenetic analysis of the thiolase family. Implications for the evolutionary origin of peroxisomes. J. Mol. Evol. 35, 147–155 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the German Federal Ministry of Education and Research (GenoMik) for financial support and the Swiss light source beamline X06DA for offering beamtime.

Author information

Authors and Affiliations

Authors

Contributions

T.B. and M.U. performed biochemical and genetic experiments as well as bioinformatic analysis. K.S. performed chemical analysis. G.Z. and T.S. performed crystallographic studies. G.Z. and C.H. designed research. G.Z., T.B. and C.H. wrote the manuscript.

Corresponding authors

Correspondence to Georg Zocher or Christian Hertweck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 3552 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bretschneider, T., Zocher, G., Unger, M. et al. A ketosynthase homolog uses malonyl units to form esters in cervimycin biosynthesis. Nat Chem Biol 8, 154–161 (2012). https://doi.org/10.1038/nchembio.746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing