Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation

Abstract

We have developed a readily accessible disulfide-directed methodology for the site-specific modification of histones by ubiquitin and ubiquitin-like proteins. The disulfide-linked analog of mono-ubiquitylated H2B stimulated the H3K79 methyltransferase activity of hDot1L to a similar extent as the native isopeptide linkage. This permitted structure-activity studies of ubiquitylated mononucleosomes that revealed plasticity in the mechanism of hDot1L stimulation and identified surfaces of ubiquitin important for activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure-activity relationships of ubiquitylated mononuclesomes.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hershko, A. & Ciechanover, A. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  2. Deshaies, R.J. & Joazeiro, C.A.P. Annu. Rev. Biochem. 78, 399–434 (2009).

    Article  CAS  Google Scholar 

  3. Goldknopf, I.L. & Busch, H. Proc. Natl. Acad. Sci. USA 74, 864–868 (1977).

    Article  CAS  Google Scholar 

  4. West, M.H. & Bonner, W.M. Nucleic Acids Res. 8, 4671–4680 (1980).

    Article  CAS  Google Scholar 

  5. Nickel, B.E., Allis, C.D. & Davie, J.R. Biochemistry 28, 958–963 (1989).

    Article  CAS  Google Scholar 

  6. Shilatifard, A. Annu. Rev. Biochem. 75, 243–269 (2006).

    Article  CAS  Google Scholar 

  7. Jenuwein, T. & Allis, C.D. Science 293, 1074–1080 (2001).

    Article  CAS  Google Scholar 

  8. Weake, V.M. & Workman, J.L. Mol. Cell 29, 653–663 (2008).

    Article  CAS  Google Scholar 

  9. Kim, J. et al. Cell 137, 459–471 (2009).

    Article  CAS  Google Scholar 

  10. McGinty, R., Kim, J., Chatterjee, C., Roeder, R. & Muir, T. Nature 453, 812–816 (2008).

    Article  CAS  Google Scholar 

  11. Okada, Y. et al. Cell 121, 167–178 (2005).

    Article  CAS  Google Scholar 

  12. Zhu, B. et al. Mol. Cell 20, 601–611 (2005).

    Article  CAS  Google Scholar 

  13. Chatterjee, C., McGinty, R.K., Pellois, J.P. & Muir, T.W. Angew. Chem. Int. Edn Engl. 46, 2814–2818 (2007).

    Article  CAS  Google Scholar 

  14. Van Kasteren, S.I. et al. Nature 446, 1105–1109 (2007).

    Article  CAS  Google Scholar 

  15. Simon, M. et al. Cell 128, 1003–1012 (2007).

    Article  CAS  Google Scholar 

  16. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  17. Rabanal, F., DeGrado, W. & Dutton, P. Tetrahedr. Lett. 37, 1347–1350 (1996).

    Article  CAS  Google Scholar 

  18. Minsky, N. & Oren, M. Mol. Cell 16, 631–639 (2004).

    Article  CAS  Google Scholar 

  19. Geng, F. & Tansey, W.P. Mol. Biol. Cell 19, 3616–3624 (2008).

    Article  CAS  Google Scholar 

  20. McGinty, R.K. et al. ACS Chem. Biol. 4, 958–968 (2009).

    Article  CAS  Google Scholar 

  21. Whitby, F.G., Xia, G., Pickart, C.M. & Hill, C.P. J. Biol. Chem. 273, 34983–34991 (1998).

    Article  CAS  Google Scholar 

  22. Ramelot, T.A. et al. J. Struct. Funct. Genomics 4, 25–30 (2003).

    Article  CAS  Google Scholar 

  23. Hicke, L. Nat. Rev. Mol. Cell Biol. 2, 195–201 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge J. Fernandez, L. Miller and R. Angeletti for assistance with ESI-MS analysis. We thank J. Kim and R. Subramanian for help in preparing hDot1 and M. Pratt for stimulating discussions. This work was funded by the US National Institutes of Health (grant number RC2CA148354) and the Starr Cancer Consortium. B.F. was supported by the Novartis and Swiss National Science Foundations. R.K.M. was supported by a US National Institutes of Health Medical Scientist Training Program grant.

Author information

Authors and Affiliations

Authors

Contributions

C.C. and T.W.M. designed the experiments. C.C. performed the experiments. C.C., R.K.M. and B.F. prepared new reagents. C.C. and T.W.M. analyzed the experimental results and wrote the manuscript.

Corresponding author

Correspondence to Tom W Muir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–18 (PDF 5450 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, C., McGinty, R., Fierz, B. et al. Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation. Nat Chem Biol 6, 267–269 (2010). https://doi.org/10.1038/nchembio.315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.315

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing