Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Toxicity and repair of DNA adducts produced by the natural product yatakemycin

Abstract

Yatakemycin (YTM) is an extraordinarily toxic DNA alkylating agent with potent antimicrobial and antitumor properties and is the most recent addition to the CC-1065 and duocarmycin family of natural products. Though bulky DNA lesions the size of those produced by YTM are normally removed from the genome by the nucleotide-excision repair (NER) pathway, YTM adducts are also a substrate for the bacterial DNA glycosylases AlkD and YtkR2, unexpectedly implicating base-excision repair (BER) in their elimination. The reason for the extreme toxicity of these lesions and the molecular basis for the way they are eliminated by BER have been unclear. Here, we describe the structural and biochemical properties of YTM adducts that are responsible for their toxicity, and define the mechanism by which they are excised by AlkD. These findings delineate an alternative strategy for repair of bulky DNA damage and establish the cellular utility of this pathway relative to that of NER.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Determination of YTM resistance.
Figure 3: Characterization of YTMA-DNA.
Figure 4: Excision of YTMA by AlkD.
Figure 5: Excision of a fluorinated YTMA analog (YTMAF) by AlkD.
Figure 6: Inhibition of AP-DNA incision.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Friedberg, E.C. et al. DNA Repair and Mutagenesis (ASM Press, 2006).

  2. Truglio, J.J., Croteau, D.L., Van Houten, B. & Kisker, C. Prokaryotic nucleotide excision repair: the UvrABC system. Chem. Rev. 106, 233–252 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Nouspikel, T. DNA repair in mammalian cells: nucleotide excision repair: variations on versatility. Cell. Mol. Life Sci. 66, 994–1009 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Fromme, J.C. & Verdine, G.L. Base excision repair. Adv. Protein Chem. 69, 1–41 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Hitomi, K., Iwai, S. & Tainer, J.A. The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair. DNA Repair (Amst.) 6, 410–428 (2007).

    Article  CAS  Google Scholar 

  6. Brooks, S.C., Adhikary, S., Rubinson, E.H. & Eichman, B.F. Recent advances in the structural mechanisms of DNA glycosylases. Biochim. Biophys. Acta 1834, 247–271 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Slupphaug, G. et al. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 384, 87–92 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Stivers, J.T. Site-specific DNA damage recognition by enzyme-induced base flipping. Prog. Nucleic Acid Res. Mol. Biol. 77, 37–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Mullins, E.A. et al. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions. Nature 527, 254–258 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rubinson, E.H., Gowda, A.S., Spratt, T.E., Gold, B. & Eichman, B.F. An unprecedented nucleic acid capture mechanism for excision of DNA damage. Nature 468, 406–411 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hanka, L.J., Dietz, A., Gerpheide, S.A., Kuentzel, S.L. & Martin, D.G. CC-1065 (NSC-298223), a new antitumor antibiotic. Production, in vitro biological activity, microbiological assays and taxonomy of the producing microorganism. J. Antibiot. (Tokyo) 31, 1211–1217 (1978).

    Article  CAS  Google Scholar 

  12. Takahashi, I. et al. Duocarmycin A, a new antitumor antibiotic from Streptomyces. J. Antibiot. (Tokyo) 41, 1915–1917 (1988).

    Article  CAS  Google Scholar 

  13. Ichimura, M. et al. Duocarmycin SA, a new antitumor antibiotic from Streptomyces sp. J. Antibiot. (Tokyo) 43, 1037–1038 (1990).

    Article  CAS  Google Scholar 

  14. Igarashi, Y. et al. Yatakemycin, a novel antifungal antibiotic produced by Streptomyces sp. TP-A0356. J. Antibiot. (Tokyo) 56, 107–113 (2003).

    Article  CAS  Google Scholar 

  15. Xu, H. et al. Self-resistance to an antitumor antibiotic: a DNA glycosylase triggers the base-excision repair system in yatakemycin biosynthesis. Angew. Chem. Int. Ed. Engl. 51, 10532–10536 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Martin, D.G. et al. CC-1065 (NSC 298223), a potent new antitumor agent: improved production and isolation, characterization and antitumor activity. J. Antibiot. (Tokyo) 34, 1119–1125 (1981).

    Article  CAS  Google Scholar 

  17. Lin, C.H. & Patel, D.J. Solution structure of the covalent duocarmycin A-DNA duplex complex. J. Mol. Biol. 248, 162–179 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Eis, P.S. et al. High resolution solution structure of a DNA duplex alkylated by the antitumor agent duocarmycin SA. J. Mol. Biol. 272, 237–252 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Schnell, J.R., Ketchem, R.R., Boger, D.L. & Chazin, W.J. Binding-induced activation of DNA alkylation by duocarmycin SA: insights from the structure of an indole derivative-DNA adduct. J. Am. Chem. Soc. 121, 5645–5652 (1999).

    Article  CAS  Google Scholar 

  20. Parrish, J.P., Kastrinsky, D.B., Wolkenberg, S.E., Igarashi, Y. & Boger, D.L. DNA alkylation properties of yatakemycin. J. Am. Chem. Soc. 125, 10971–10976 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Tichenor, M.S. et al. Systematic exploration of the structural features of yatakemycin impacting DNA alkylation and biological activity. J. Am. Chem. Soc. 129, 10858–10869 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Swenson, D.H. et al. Mechanism of interaction of CC-1065 (NSC 298223) with DNA. Cancer Res. 42, 2821–2828 (1982).

    CAS  PubMed  Google Scholar 

  23. Gunz, D., Hess, M.T. & Naegeli, H. Recognition of DNA adducts by human nucleotide excision repair. Evidence for a thermodynamic probing mechanism. J. Biol. Chem. 271, 25089–25098 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Selby, C.P. & Sancar, A. ABC excinuclease incises both 5′ and 3′ to the CC-1065-DNA adduct and its incision activity is stimulated by DNA helicase II and DNA polymerase I. Biochemistry 27, 7184–7188 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Jin, S.G. et al. Excision repair of adozelesin-N3 adenine adduct by 3-methyladenine-DNA glycosylases and UvrABC nuclease. Mol. Cells 11, 41–47 (2001).

    CAS  PubMed  Google Scholar 

  26. Kiakos, K. et al. DNA sequence selective adenine alkylation, mechanism of adduct repair, and in vivo antitumor activity of the novel achiral seco-amino-cyclopropylbenz[e]indolone analogue of duocarmycin AS-I-145. Mol. Cancer Ther. 6, 2708–2718 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Gray, D.M., Ratliff, R.L. & Vaughan, M.R. Circular dichroism spectroscopy of DNA. Methods Enzymol. 211, 389–406 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Franklin, R.E. & Gosling, R.G. Molecular configuration in sodium thymonucleate. Nature 171, 740–741 (1953).

    Article  CAS  PubMed  Google Scholar 

  29. Lucas, A.A., Lambin, P., Mairesse, R. & Mathot, M. Revealing the backbone structure of B-DNA from laser optical simulations of its X-ray diffraction diagram. J. Chem. Educ. 76, 378–383 (1999).

    Article  CAS  Google Scholar 

  30. Lucas, A.A. A-DNA and B-DNA: comparing their historical X-ray fiber diffraction images. J. Chem. Educ. 85, 737–743 (2008).

    Article  CAS  Google Scholar 

  31. Shibasaki, K., Fujii, A., Mikami, N. & Tsuzuki, S. Magnitude of the CH/π interaction in the gas phase: experimental and theoretical determination of the accurate interaction energy in benzene-methane. J. Phys. Chem. A 110, 4397–4404 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Osborne, M.R. & Phillips, D.H. Preparation of a methylated DNA standard, and its stability on storage. Chem. Res. Toxicol. 13, 257–261 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Parsons, Z.D., Bland, J.M., Mullins, E.A. & Eichman, B.F. A catalytic role for C-H/π interactions in base excision repair by Bacillus cereus DNA glycosylase AlkD. J. Am. Chem. Soc. 138, 11485–11488 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramstein, J. & Lavery, R. Energetic coupling between DNA bending and base pair opening. Proc. Natl. Acad. Sci. USA 85, 7231–7235 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, W. Poor base stacking at DNA lesions may initiate recognition by many repair proteins. DNA Repair (Amst.) 5, 654–666 (2006).

    Article  CAS  Google Scholar 

  36. Gold, B., Stone, M.P. & Marky, L.A. Looking for Waldo: a potential thermodynamic signature to DNA damage. Acc. Chem. Res. 47, 1446–1454 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mullins, E.A., Rubinson, E.H. & Eichman, B.F. The substrate binding interface of alkylpurine DNA glycosylase AlkD. DNA Repair (Amst.) 13, 50–54 (2014).

    Article  CAS  Google Scholar 

  38. Barrett, T.E. et al. Crystal structure of a thwarted mismatch glycosylase DNA repair complex. EMBO J. 18, 6599–6609 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, S., Bowman, B.R., Ueno, Y., Wang, S. & Verdine, G.L. Synthesis and structure of duplex DNA containing the genotoxic nucleobase lesion N7-methylguanine. J. Am. Chem. Soc. 130, 11570–11571 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pidugu, L.S. et al. Structural basis for excision of 5-formylcytosine by thymine DNA glycosylase. Biochemistry 55, 6205–6208 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Stivers, J.T., Pankiewicz, K.W. & Watanabe, K.A. Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase. Biochemistry 38, 952–963 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Schärer, O.D., Kawate, T., Gallinari, P., Jiricny, J. & Verdine, G.L. Investigation of the mechanisms of DNA binding of the human G/T glycosylase using designed inhibitors. Proc. Natl. Acad. Sci. USA 94, 4878–4883 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Daley, J.M., Zakaria, C. & Ramotar, D. The endonuclease IV family of apurinic/apyrimidinic endonucleases. Mutat. Res. 705, 217–227 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Mullins, E.A., Shi, R., Kotsch, L.A. & Eichman, B.F. A new family of HEAT-like repeat proteins lacking a critical substrate recognition motif present in related DNA glycosylases. PLoS One 10, e0127733 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Noll, D.M., Mason, T.M. & Miller, P.S. Formation and repair of interstrand cross-links in DNA. Chem. Rev. 106, 277–301 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alseth, I. et al. A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD. Mol. Microbiol. 59, 1602–1609 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, Y.C., Li, C.L., Hsiao, Y.Y., Duh, Y. & Yuan, H.S. Structure and function of TatD exonuclease in DNA repair. Nucleic Acids Res. 42, 10776–10785 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Komaki, H., Ichikawa, N., Hosoyama, A., Fujita, N. & Igarashi, Y. Draft genome sequence of Streptomyces sp. TP-A0356, a producer of yatakemycin. Genome Announc. 3, e01446–15 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Wang, S. et al. Characterization of a novel DNA glycosylase from S. sahachiroi involved in the reduction and repair of azinomycin B induced DNA damage. Nucleic Acids Res. 44, 187–197 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Semlow, D.R., Zhang, J., Budzowska, M., Drohat, A.C. & Walter, J.C. Replication-dependent unhooking of DNA interstrand cross-links by the NEIL3 glycosylase. Cell 167, 498–511.e14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rubinson, E.H., Metz, A.H., O' Quin, J. & Eichman, B.F. A new protein architecture for processing alkylation damaged DNA: the crystal structure of DNA glycosylase AlkD. J. Mol. Biol. 381, 13–23 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data. Methods Enzymol. 276, 307–326 (1997).

    CAS  PubMed  Google Scholar 

  53. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mullins, E.A. et al. An HPLC-tandem mass spectrometry method for simultaneous detection of alkylated base excision repair products. Methods 64, 59–66 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Igarashi (Toyama Prefectural University) for providing yatakemycin. This work was funded by the National Science Foundation (MCB-1517695) and the National Institutes of Health (R01 ES019625). Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy Office of Science by Argonne National Laboratory, was supported by the US Department of Energy (DE-AC02-06CH11357). Use of LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (085P1000817). E.A.M. was partially supported by the Vanderbilt Training Program in Environmental Toxicology (T32 ES007028).

Author information

Authors and Affiliations

Authors

Contributions

E.A.M. and B.F.E. conceived the project; E.A.M., R.S., and B.F.E. designed experiments; E.A.M. performed biochemical, biophysical, and structural experiments; R.S. performed cellular experiments; E.A.M., R.S., and B.F.E. analyzed data; E.A.M. and B.F.E. wrote the paper.

Corresponding author

Correspondence to Brandt F Eichman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–8 and Supplementary Tables 1–3 (PDF 13733 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mullins, E., Shi, R. & Eichman, B. Toxicity and repair of DNA adducts produced by the natural product yatakemycin. Nat Chem Biol 13, 1002–1008 (2017). https://doi.org/10.1038/nchembio.2439

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2439

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing