Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB

Abstract

The bacterial actin homolog MreB, which is crucial for rod shape determination, forms filaments that rotate around the cell width on the inner surface of the cytoplasmic membrane. What determines filament association with the membranes or with other cell wall elongation proteins is not known. Using specific chemical and genetic perturbations while following MreB filament motion, we find that MreB membrane association is an actively regulated process that depends on the presence of lipid-linked peptidoglycan precursors. When precursors are depleted, MreB filaments disassemble into the cytoplasm, and peptidoglycan synthesis becomes disorganized. In cells that lack wall teichoic acids but continue to make peptidoglycan, dynamic MreB filaments are observed, although their presence is not sufficient to establish a rod shape. We propose that the cell regulates MreB filament association with the membrane, allowing rapid and reversible inactivation of cell wall enzyme complexes in response to the inhibition of cell wall synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the cell wall synthetic pathways in B. subtilis.
Figure 2: Inhibition of WTA export with targocil leads to dissolving of the MreB cytoskeleton.
Figure 3: PG synthesis is mislocalized after WTA inhibition.
Figure 4: Availability of the carrier lipid, but not cell surface WTA, is required for MreB filament formation.
Figure 5: Prolonged treatment with cell wall inhibitors leads to dissolution of MreB into the cytoplasm.
Figure 6: Presence of lipid II is required for MreB filament formation and motion.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Garner, E.C. et al. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333, 222–225 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Domínguez-Escobar, J. et al. Processive Movement of MreB-Associated Cell Wall Biosynthetic Complexes in Bacteria. Science 333, 225–228 (2011).

    PubMed  Google Scholar 

  3. van Teeffelen, S. et al. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc. Natl. Acad. Sci. USA 108, 15822–15827 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim, S.Y., Gitai, Z., Kinkhabwala, A., Shapiro, L. & Moerner, W.E. Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. Proc. Natl. Acad. Sci. USA 103, 10929–10934 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Salje, J., van den Ent, F., de Boer, P. & Löwe, J. Direct membrane binding by bacterial actin MreB. Mol. Cell 43, 478–487 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Reimold, C., Defeu Soufo, H.J., Dempwolff, F. & Graumann, P.L. Motion of variable length MreB filaments at the bacterial cell membrane influences cell morphology. Mol. Biol. Cell 24, 2340–2349 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ingerson-Mahar, M. & Gitai, Z. A growing family: the expanding universe of the bacterial cytoskeleton. FEMS Microbiol. Rev. 36, 256–266 (2012).

    CAS  PubMed  Google Scholar 

  8. Chastanet, A. & Carballido-López, R. The actin-like MreB proteins in Bacillus subtilis: a new turn. Front. Biosci. (Schol. Ed.) 4, 1582–1606 (2012).

    Google Scholar 

  9. Kawai, Y., Asai, K. & Errington, J. Partial functional redundancy of MreB isoforms, MreB, Mbl and MreBH, in cell morphogenesis of Bacillus subtilis. Mol. Microbiol. 73, 719–731 (2009).

    CAS  PubMed  Google Scholar 

  10. Schirner, K. & Errington, J. The cell wall regulator σI specifically suppresses the lethal phenotype of mbl mutants in Bacillus subtilis. J. Bacteriol. 191, 1404–1413 (2009).

    CAS  PubMed  Google Scholar 

  11. Wachi, M. & Matsuhashi, M. Negative control of cell division by mreB, a gene that functions in determining the rod shape of Escherichia coli cells. J. Bacteriol. 171, 3123–3127 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Typas, A., Banzhaf, M., Gross, C.a & Vollmer, W From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 10, 123–136 (2012).

    CAS  Google Scholar 

  13. Kawai, Y. et al. A widespread family of bacterial cell wall assembly proteins. EMBO J. 30, 4931–4941 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kawai, Y., Daniel, R.A. & Errington, J. Regulation of cell wall morphogenesis in Bacillus subtilis by recruitment of PBP1 to the MreB helix. Mol. Microbiol. 71, 1131–1144 (2009).

    PubMed  Google Scholar 

  15. Varma, A. & Young, K.D. In Escherichia coli, MreB and FtsZ direct the synthesis of lateral cell wall via independent pathways that require PBP2. J. Bacteriol. 191, 3526–3533 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Carballido-López, R. & Formstone, A. Shape determination in Bacillus subtilis. Curr. Opin. Microbiol. 10, 611–616 (2007).

    PubMed  Google Scholar 

  17. Ursell, T.S. et al. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proc. Natl. Acad. Sci. USA 111, E1025–E1034 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Brown, S., Santa Maria, J.P. & Walker, S. Wall teichoic acids of Gram-positive bacteria. Annu. Rev. Microbiol. 67, 313–336 (2013).

    CAS  PubMed  Google Scholar 

  19. D'Elia, M.A., Millar, K.E., Beveridge, T.J. & Brown, E.D. Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis. J. Bacteriol. 188, 8313–8316 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. D'Elia, M.A. et al. Probing teichoic acid genetics with bioactive molecules reveals new interactions among diverse processes in bacterial cell wall biogenesis. Chem. Biol. 16, 548–556 (2009).

    CAS  PubMed  Google Scholar 

  21. Formstone, A. et al. Localization and interactions of teichoic acid synthetic enzymes in Bacillus subtilis. J. Bacteriol. 190, 1812–1821 (2008).

    CAS  PubMed  Google Scholar 

  22. Swoboda, J.G. et al. Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus. ACS Chem. Biol. 4, 875–883 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, K., Campbell, J., Swoboda, J.G., Cuny, G.D. & Walker, S. Development of improved inhibitors of wall teichoic acid biosynthesis with potent activity against Staphylococcus aureus. Bioorg. Med. Chem. Lett. 20, 1767–1770 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schirner, K., Stone, L.K. & Walker, S. ABC transporters required for export of wall teichoic acids do not discriminate between different main chain polymers. ACS Chem. Biol. 6, 407–412 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lages, M.C., Beilharz, K., Morales Angeles, D., Veening, J.-W. & Scheffers, D.-J. The localization of key Bacillus subtilis penicillin binding proteins during cell growth is determined by substrate availability. Environ. Microbiol. 15, 3272–3281 (2013).

    CAS  PubMed  Google Scholar 

  26. Kuru, E. et al. In Situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew. Chem. Int. Edn Engl. 51, 12519–12523 (2012).

    CAS  Google Scholar 

  27. Siegrist, M.S. et al. D-amino acid chemical reporters reveal peptidoglycan dynamics of an intracellular pathogen. ACS Chem. Biol. 8, 500–505 (2013).

    CAS  PubMed  Google Scholar 

  28. Soldo, B., Lazarevic, V. & Karamata, D. tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. Microbiology 148, 2079–2087 (2002).

    CAS  PubMed  Google Scholar 

  29. Merrifield, C.J., Feldman, M.E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat. Cell Biol. 4, 691–698 (2002).

    CAS  PubMed  Google Scholar 

  30. Eiamphungporn, W. & Helmann, J.D. The Bacillus subtilis σM regulon and its contribution to cell envelope stress responses. Mol. Microbiol. 67, 830–848 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Thackray, P.D. & Moir, A. SigM, an extracytoplasmic function sigma factor of Bacillus subtilis, is activated in response to cell wall antibiotics, ethanol, heat, acid, and superoxide stress. J. Bacteriol. 185, 3491–3498 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Inoue, H., Suzuki, D. & Asai, K. A putative bactoprenol glycosyltransferase, CsbB, in Bacillus subtilis activates SigM in the absence of co-transcribed YfhO. Biochem. Biophys. Res. Commun. 436, 6–11 (2013).

    CAS  PubMed  Google Scholar 

  33. Lee, Y.H. & Helmann, J.D. Reducing the level of undecaprenyl pyrophosphate synthase has complex effects on susceptibility to cell wall antibiotics. Antimicrob. Agents Chemother. 57, 4267–4275 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mascher, T., Margulis, N.G., Wang, T., Ye, R.W. & Helmann, J.D. Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol. Microbiol. 50, 1591–1604 (2003).

    CAS  PubMed  Google Scholar 

  35. Cao, M. & Helmann, J.D. Regulation of the Bacillus subtilis bcrC bacitracin resistance gene by two extracytoplasmic function σ factors. J. Bacteriol. 184, 6123–6129 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Asai, K., Ishiwata, K., Matsuzaki, K. & Sadaie, Y. A viable Bacillus subtilis strain without functional extracytoplasmic function sigma genes. J. Bacteriol. 190, 2633–2636 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Janas, T., Chojnacki, T. & Swiezewska, E. The effect of undecaprenol on bilayer lipid membranes. Acta Biochim. Pol. 41, 351–358 (1994).

    CAS  PubMed  Google Scholar 

  38. Ganchev, D.N., Hasper, H.E., Breukink, E. & de Kruijff, B. Size and orientation of the lipid II headgroup as revealed by AFM imaging. Biochemistry 45, 6195–6202 (2006).

    CAS  PubMed  Google Scholar 

  39. Strahl, H., Bürmann, F. & Hamoen, L.W. The actin homologue MreB organizes the bacterial cell membrane. Nat. Commun. 5, 3442 (2014).

    PubMed  Google Scholar 

  40. Delley, P.A. & Hall, M.N. Cell wall stress depolarizes cell growth via hyperactivation of RHO1. J. Cell Biol. 147, 163–174 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Anderson, J.S., Matsuhashi, M., Haskin, M.A. & Strominger, J.L. Biosynthesis of the Peptidoglycan of Bacterial Cell Walls: II. Phospholipid carriers in the reaction sequence. J. Biol. Chem. 242, 3180–3190 (1967).

    CAS  PubMed  Google Scholar 

  42. Tipper, D.J. & Strominger, J.L. Biosynthesis of the peptidoglycan of bacterial cell walls. XII. Inhibition of cross-linking by penicillins and cephalosporins: studies in Staphylococcus aureus in vivo. J. Biol. Chem. 243, 3169–3179 (1968).

    CAS  PubMed  Google Scholar 

  43. Lara, B., Mengin-Lecreulx, D., Ayala, J.a & van Heijenoort, J. Peptidoglycan precursor pools associated with MraY and FtsW deficiencies or antibiotic treatments. FEMS Microbiol. Lett. 250, 195–200 (2005).

    CAS  PubMed  Google Scholar 

  44. Brandish, P.E. et al. Modes of action of tunicamycin, liposidomycin B, and mureidomycin A: inhibition of phospho-N-acetylmuramyl-pentapeptide translocase from Escherichia coli. Antimicrob. Agents Chemother. 40, 1640–1644 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kahan, F.M., Kahan, J.S., Cassidy, P.J. & Kropp, H. The mechanism of action of fosfomycin (phosponomycin). Ann. NY Acad. Sci. 235, 364–386 (1974).

    CAS  PubMed  Google Scholar 

  46. Carballido-López, R. et al. Actin homolog MreBH governs cell morphogenesis by localization of the cell wall hydrolase LytE. Dev. Cell 11, 399–409 (2006).

    PubMed  Google Scholar 

  47. Bach, J.N. & Bramkamp, M. Flotillins functionally organize the bacterial membrane. Mol. Microbiol. 88, 1205–1217 (2013).

    CAS  PubMed  Google Scholar 

  48. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  Google Scholar 

  49. Thévenaz, P., Ruttimann, U.E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).

    PubMed  Google Scholar 

  50. Hachmann, A.-B. et al. Reduction in membrane phosphatidylglycerol content leads to daptomycin resistance in Bacillus subtilis. Antimicrob. Agents Chemother. 55, 4326–4337 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Defeu Soufo, H.J. & Graumann, P.L. Dynamic movement of actin-like proteins within bacterial cells. EMBO Rep. 5, 789–794 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, C.Y., Buranen, S.L. & Ye, Z.H. Construction of single-copy integration vectors for Staphylococcus aureus. Gene 103, 101–105 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Meeske and D. Rudner (Harvard Medical School) for strains bEG275 and bKM424, K. Asai (Saitama University) for strain BSU2007, and P. Stoddard (Harvard University) for strain bPS01. We also thank S. Ringgaard and T. Bernhardt for critical reading of the manuscript. We are also grateful to Y. Brun for the fluorescent D-amino acids, and to T. Böttcher (Harvard Medical School) and H. Elliott (Harvard Image and Data Analysis Core) for the temporal variance algorithm. This work was funded by US National Institutes of Health (NIH) grant P01AI083214 (to S.W.), NIH grant GM-047446 (to J.D.H.), NIH grant GM073831 (to D. Rudner for initial support of E.C.G.). E.C.G. was also supported by the Smith Family Award and a Searle Scholar Fellowship. K.S. gratefully acknowledges the DFG for a Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

K.S., Y.-J.E., E.C.G., J.D.H. and S.W. designed the experiments; K.S. and E.C.G. took images for targocil treatment and TarGH depletion; Y.-J.E. and K.S. did the experiments for repletion and for imaging with various TIRF angles; M.D. provided various strains, helped with the microscopy and provided preliminary results; K.S. prepared the samples for, and Y.L. performed and analyzed the microarray; other experiments and all image analysis were done by K.S.; K.S. and S.W. wrote the paper.

Corresponding authors

Correspondence to Ethan C Garner or Suzanne Walker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3 and Supplementary Figures 1–8. (PDF 4854 kb)

MreB-GFP in targocil-sensitive B. subtilis cells.

Cells shown with or with out addition of targocil after the third frame (1 min) of the time lapse, or after washing out of targocil as indicated. Images were acquired every 30 sec over 30 min on a spinning disk confocal microscope. This movie corresponds to images shown in Fig. 2. (MOV 4035 kb)

MreBGFP in a targocil-insensitive strain, with addition of targocil after the third frame (1 min) of the time lapse.

Images were acquired every 30 sec over 30 min on a spinning disk confocal microscope. This movie corresponds to images shown in Supplementary Fig. 1b. (MOV 434 kb)

MreBGFP during TagGH depletion.

5 min time lapse, frame rate 10 sec, spinning disk confocal microscope. Movies were acquired either in the presence of inducer or 2 h after depletion as indicated. This movie corresponds to images shown in Supplementary Fig. 1c. (MOV 650 kb)

Pbp2A-GFP in a targocil-sensitive strain, with or without 1 h targocil treatment as indicated.

Images were acquired with a frame rate of 1 sec, streaming acquisition over 100 sec on a TIRF microscope. This movie corresponds to images shown in Fig. 3a. (MOV 581 kb)

MreB-GFP in tagF depletion strain, grown with inducer or after depleting for 2 h as indicated.

5 min time-lapse, frame rate 10 s, TIRF. This movie corresponds to images shown in Fig. 4a. (MOV 193 kb)

MreB-GFP in tagO null mutant strain lacking WTAs.

5 min time-lapse, frame rate 10 s, TIRF. This movie corresponds to images shown in Fig. 4b. (MOV 22 kb)

MreB-GFP in uppS depletion strain, in the presence and 4 h after removal of the inducer.

5 min time lapse, frame rate 10 s, TIRF. This movie corresponds to images shown in Fig. 4c. (MOV 39 kb)

MreB-GFP in a strain untreated or treated with a cell wall inhibitor (vancomycin) or with a protein synthesis inhibitor (tetracycline) as indicated.

5 min time lapse, frame rate 10 s, TIRF. This movie corresponds to images shown in Fig. 5a. (MOV 229 kb)

MreBGFP in an otherwise wild-type background strain without or with treatment for 1 h with the antibiotics as indicated.

Images were acquired with a 10 s frame rate for 5 min on a TIRF microscope. This movie corresponds to images shown in Supplementary Fig. 4. (MOV 480 kb)

GFP-Mbl at its native locus under control of the native promoter; untreated or treated with vancomycin for 1 h as indicated.

5 min time lapse, frame rate 10 s, TIRF. This movie corresponds to images of GFP-Mbl shown in Supplementary Fig. 5b. (MOV 118 kb)

MreB-GFP at its native locus under control of the native promoter; untreated or treated with vancomycin for 1 h as indicated.

5 min time lapse, frame rate 10 s, TIRF. This movie corresponds to images of MreB shown in Supplementary Fig. 5b. (MOV 118 kb)

MreBGFP after washing out bacitracin after 1 h treatment at the time points indicated.

Images were acquired every 1 min for 30 min, TIRF. This movie corresponds to images shown in Supplementary Fig. 6c. (MOV 591 kb)

MreB-GFP in strain without ECF sigma factors, either untreated or after 1 h vancomycin treatment.

5 min time lapse, frame rate 10 s, TIRF. This movie corresponds to images shown in Fig. 6b. (MOV 206 kb)

MreB-GFP in MurG depletion strain. Shown are 5-min time-lapse series after 4 h of depletion, and 15, 30 and 45 min after re-addition of inducer.

Frame rate 10 s, TIRF. This movie corresponds to images shown in Fig. 6c. (MOV 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schirner, K., Eun, YJ., Dion, M. et al. Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB. Nat Chem Biol 11, 38–45 (2015). https://doi.org/10.1038/nchembio.1689

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1689

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology