Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intermolecular domain swapping induces intein-mediated protein alternative splicing

Abstract

Protein sequences are diversified on the DNA level by recombination and mutation and can be further increased on the RNA level by alternative RNA splicing, involving introns that have important roles in many biological processes. The protein version of introns (inteins), which catalyze protein splicing, were first reported in the 1990s. The biological roles of protein splicing still remain elusive because inteins neither provide any clear benefits nor have an essential role in their host organisms. We now report protein alternative splicing, in which new protein sequences can be produced by protein recombination by intermolecular domain swapping of inteins, as elucidated by NMR spectroscopy and crystal structures. We demonstrate that intein-mediated protein alternative splicing could be a new strategy to increase protein diversity (that is, functions) without any modification in genetic backgrounds. We also exploited it as a post-translational protein conformation–driven switch of protein functions (for example, as highly specific protein interference).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein splicing in cis and trans and iPAS.
Figure 2: Structural basis of iPAS by NMR spectroscopy and X-ray crystallography.
Figure 3: iPAS without split inteins.
Figure 4: Factors influencing iPAS.
Figure 5: Modulation of GFP fluorescence by the conformation-driven switch.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Swiss-Prot

References

  1. Paulus, H. Protein splicing and related forms of protein autoprocessing. Annu. Rev. Biochem. 69, 447–496 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Hirata, R. et al. Molecular structure of a gene, VMA1, encoding the catalytic subunit of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J. Biol. Chem. 265, 6726–6733 (1990).

    CAS  PubMed  Google Scholar 

  3. Kane, P.M. et al. Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H+-adenosine triphosphatase. Science 250, 651–657 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Perler, F.B. InBase, the Intein Database. Nucleic Acids Res. 30, 383–384 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Callahan, B.P., Topilina, N.I., Stanger, M.J., Van Roey, P. & Belfort, M. Structure of catalytically competent intein caught in a redox trap with functional and evolutionary implications. Nat. Struct. Mol. Biol. 18, 630–633 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu, H., Hu, Z. & Liu, X.Q. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. USA 95, 9226–9231 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Swithers, K.S., Senejani, A.G., Fournier, G.P. & Gogarten, J.P. Conservation of intron and intein insertion sites: implications for life histories of parasitic genetic elements. BMC Evol. Biol. 9, 303 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kawasaki, M., Satow, Y., Ohya, Y. & Anraku, Y. Protein splicing in the yeast Vma1 protozyme: evidence for an intramolecular reaction. FEBS Lett. 412, 518–520 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Southworth, M.W. et al. Control of protein splicing by intein fragment reassembly. EMBO J. 17, 918–926 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mootz, H.D. Split inteins as versatile tools for protein semisynthesis. ChemBioChem 10, 2579–2589 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Perler, F.B. A natural example of protein trans-splicing. Trends Biochem. Sci. 24, 209–211 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Caspi, J., Amitai, G., Belenkiy, O. & Pietrokovski, S. Distribution of split DnaE inteins in cyanobacteria. Mol. Microbiol. 50, 1569–1577 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pietrokovski, S. Intein spread and extinction in evolution. Trends Genet. 17, 465–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Dassa, B., London, N., Stoddard, B.L., Schueler-Furman, O. & Pietrokovski, S. Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family. Nucleic Acids Res. 37, 2560–2573 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iwai, H., Züger, S., Jin, J. & Tam, P.H. Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett. 580, 1853–1858 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Ellilä, S., Jurvansuu, J.M. & Iwaï, H. Evaluation and comparison of protein splicing by exogenous inteins with foreign exteins in Escherichia coli. FEBS Lett. 585, 3471–3477 (2011).

    Article  PubMed  Google Scholar 

  17. Aranko, A.S., Züger, S., Buchinger, E. & Iwaï, H. In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins. PLoS ONE 4, e5185 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Oeemig, J.S., Aranko, A.S., Djupsjöbacka, J., Heinämäki, K. & Iwaï, H. Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Lett. 583, 1451–1456 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, Y. & Eisenberg, D. 3D domain swapping: as domains continue to swap. Protein Sci. 11, 1285–1299 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Züger, S. & Iwai, H. Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat. Biotechnol. 23, 736–740 (2005).

    Article  PubMed  Google Scholar 

  21. Heinämäki, K., Oeemig, J.S., Pääkkonen, K., Djupsjöbacka, J. & Iwaï, H. NMR resonance assignment of DnaE intein from Nostoc punctiforme. Biomol. NMR Assign. 3, 41–43 (2009); erratum 7, 115–116 (2013).

    Article  PubMed  Google Scholar 

  22. Muona, M., Aranko, A.S., Raulinaitis, V. & Iwai, H. Segmental isotopic labeling of multi-domain and fusion proteins by protein trans-splicing in vivo and in vitro. Nat. Protoc. 5, 574–587 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Klabunde, T., Sharma, S., Telenti, A., Jacobs, W.R. & Sacchettini, J.C. Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing. Nat. Struct. Biol. 5, 31–36 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Mizutani, R. et al. Protein-splicing reaction via a thiazolidine intermediate: crystal structure of the VMA1-derived endonuclease bearing the N and C-terminal propeptides. J. Mol. Biol. 316, 919–929 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Sun, P. et al. Crystal structures of an intein from the split dnaE gene of Synechocystis sp. PCC6803 reveal the catalytic model without the penultimate histidine and the mechanism of zinc ion inhibition of protein splicing. J. Mol. Biol. 353, 1093–1105 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Oeemig, J.S., Zhou, D., Kajander, T., Wlodawer, A. & Iwaï, H. NMR and crystal structures of the Pyrococcus horikoshii RadA intein guide a strategy for engineering a highly efficient and promiscuous intein. J. Mol. Biol. 421, 85–99 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ogihara, N.L. et al. Design of three-dimensional domain-swapped dimers and fibrous oligomers. Proc. Natl. Acad. Sci. USA 98, 1404–1409 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bennett, M.J., Choe, S. & Eisenberg, D. Domain swapping: entangling alliances between proteins. Proc. Natl. Acad. Sci. USA 91, 3127–3131 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zettler, J., Schütz, V. & Mootz, H.D. The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett. 583, 909–914 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Nogami, S. et al. Homing at an extragenic locus mediated by VDE (PI-SceI) in Saccharomyces cerevisiae. Yeast 19, 773–782 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Tori, K. & Perler, F.B. The Arthrobacter species FB24 Arth_1007 (DnaB) intein is a pseudogene. PLoS ONE 6, e26361 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Clerissi, C., Grimsley, N. & Desdevises, Y. Genetic exchanges of inteins between prasinoviruses (phycodnaviridae). Evolution 67, 18–33 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Dassa, B., Amitai, G., Caspi, J., Schueler-Furman, O. & Pietrokovski, S. Trans protein splicing of cyanobacterial split inteins in endogenous and exogenous combinations. Biochemistry 46, 322–330 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Appleby-Tagoe, J.H. et al. Highly efficient and more general cis- and trans-splicing inteins through sequential directed evolution. J. Biol. Chem. 286, 34440–34447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gogarten, J.P., Senejani, A.G., Zhaxybayeva, O., Olendzenski, L. & Hilario, E. Inteins: structure, function, and evolution. Annu. Rev. Microbiol. 56, 263–287 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Clerissi, C., Desdevises, Y. & Grimsley, N. Prasinoviruses of the marine green alga Ostreococcus tauri are mainly species specific. J. Virol. 86, 4611–4619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Paulus, H. Inteins as targets for potential antimycobacterial drugs. Front. Biosci. 8, s1157–s1165 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, X.-Q. & Yang, J. Prp8 intein in fungal pathogens: target for potential antifungal drugs. FEBS Lett. 572, 46–50 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Amstutz, P., Forrer, P., Zahnd, C. & Plückthun, A. In vitro display technologies: novel developments and applications. Curr. Opin. Biotechnol. 12, 400–405 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Tori, K. & Perler, F.B. Expanding the definition of class 3 inteins and their proposed phage origin. J. Bacteriol. 193, 2035–2041 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aranko, A.S., Oeemig, J.S. & Iwaï, H. Structural basis for protein trans-splicing by a bacterial intein-like domain: protein ligation without nucleophilic residues. FEBS J. 280, 3256–3269 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Muona, M., Aranko, A.S. & Iwai, H. Segmental isotopic labelling of a multi-domain protein by protein ligation using protein trans-splicing. ChemBioChem 9, 2958–2961 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  45. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  PubMed  Google Scholar 

  46. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  PubMed  Google Scholar 

  48. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  49. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Ericsson, U.B., Hallberg, B.M., Detitta, G.T., Dekker, N. & Nordlund, P. Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal. Biochem. 357, 289–298 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Academy of Finland (131413 and 137995) and the Sigrid Jusélius Foundation and Biocenter Finland (to H.I., for crystallization, MS and NMR facilities at the Institute of Biotechnology). A.S.A. and J.S.O. acknowledge Viikki Doctoral Programme in Molecular Biosciences and the National Doctoral Programme in Informational and Structural Biology for financial support, respectively. The authors thank G. Volkmann for his help at the very early stage of the project. The authors also thank F. Perler for providing us with the latest InBase data set and S. Ferkau and C. Albert for their technical support.

Author information

Authors and Affiliations

Authors

Contributions

A.S.A. and H.I. designed and performed experiments, analyzed data and prepared the manuscript; T.K., J.S.O. and H.I. performed crystallographic experiments and analyzed diffraction data; H.I. and J.S.O. performed NMR measurements and analyzed NMR data.

Corresponding author

Correspondence to Hideo Iwaï.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3, Supplementary Figures 1–9 and Supplementary Note. (PDF 1779 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aranko, A., Oeemig, J., Kajander, T. et al. Intermolecular domain swapping induces intein-mediated protein alternative splicing. Nat Chem Biol 9, 616–622 (2013). https://doi.org/10.1038/nchembio.1320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1320

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing