Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis

Abstract

We report a new class of thiophene (TP) compounds that kill Mycobacterium tuberculosis by the previously uncharacterized mechanism of Pks13 inhibition. An F79S mutation near the catalytic Ser55 site in Pks13 conferred TP resistance in M. tuberculosis. Overexpression of wild-type Pks13 resulted in TP resistance, and overexpression of the Pks13F79S mutant conferred high resistance. In vitro, TP inhibited fatty acyl–AMP loading onto Pks13. TP inhibited mycolic acid biosynthesis in wild-type M. tuberculosis, but it did so to a much lesser extent in TP-resistant M. tuberculosis. TP treatment was bactericidal and equivalent to treatment with the first-line drug isoniazid, but it was less likely to permit emergent resistance. Combined isoniazid and TP treatment resulted in sterilizing activity. Computational docking identified a possible TP-binding groove within the Pks13 acyl carrier protein domain. This study confirms that M. tuberculosis Pks13 is required for mycolic acid biosynthesis, validates it as a druggable target and demonstrates the therapeutic potential of simultaneously inhibiting multiple targets in the same biosynthetic pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of TP2 and TP4 on mycolic acid biosynthesis in M. tuberculosis.
Figure 2: Inhibition of fatty acyl-AMP loading onto purified Pks13 by TP2.
Figure 3: Bactericidal activity of TP2, TP4 and other antituberculosis drugs against M. tuberculosis.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Espinal, M.A. The global situation of MDR-TB. Tuberculosis (Edinb.) 83, 44–51 (2003).

    Article  Google Scholar 

  2. Mondal, R. & Jain, A. Extensively drug-resistant Mycobacterium tuberculosis, India. Emerg. Infect. Dis. 13, 1429–1431 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Caminero, J.A., Sotgiu, G., Zumla, A. & Migliori, G.B. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect. Dis. 10, 621–629 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Kroon, A.M. & Van den Bogert, C. Antibacterial drugs and their interference with the biogenesis of mitochondria in animal and human cells. Pharm. Weekbl. Sci. 5, 81–87 (1983).

    CAS  PubMed  Google Scholar 

  5. Kohanski, M.A., Dwyer, D.J. & Collins, J.J. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8, 423–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wei, J.R. et al. Depletion of antibiotic targets has widely varying effects on growth. Proc. Natl. Acad. Sci. USA 108, 4176–4181 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jovetic, S., Zhu, Y., Marcone, G.L., Marinelli, F. & Tramper, J. β-Lactam and glycopeptide antibiotics: first and last line of defense? Trends Biotechnol. 28, 596–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Khoo, K.H. et al. Truncated structural variants of lipoarabinomannan in ethambutol drug-resistant strains of Mycobacterium smegmatis. Inhibition of arabinan biosynthesis by ethambutol. J. Biol. Chem. 271, 28682–28690 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Vilchèze, C. et al. Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat. Med. 12, 1027–1029 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. Slayden, R.A. et al. Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis. Antimicrob. Agents Chemother. 40, 2813–2819 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Glickman, M.S., Cox, J.S. & Jacobs, W.R. Jr. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell 5, 717–727 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Dubnau, E. et al. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol. Microbiol. 36, 630–637 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Bhatt, A., Molle, V., Besra, G.S., Jacobs, W.R. Jr. & Kremer, L. The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Mol. Microbiol. 64, 1442–1454 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Kremer, L., Baulard, A.R. & Besra, G.S. Genetics of mycolic acid biosynthesis. in Molecular Genetics of Mycobacteria (eds. Hatfull, G.F. & Jacobs, W.R. Jr.) 173–190 (ASM Press, 2000).

  15. Takayama, K., Wang, C. & Besra, G.S. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 18, 81–101 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barry, C.E. III et al. Mycolic acids: structure, biosynthesis and physiological functions. Prog. Lipid Res. 37, 143–179 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Brennan, P.J. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb.) 83, 91–97 (2003).

    Article  CAS  Google Scholar 

  18. Ojha, A.K., Trivelli, X., Guerardel, Y., Kremer, L. & Hatfull, G.F. Enzymatic hydrolysis of trehalose dimycolate releases free mycolic acids during mycobacterial growth in biofilms. J. Biol. Chem. 285, 17380–17389 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gavalda, S. et al. The Pks13/FadD32 crosstalk for the biosynthesis of mycolic acids in Mycobacterium tuberculosis. J. Biol. Chem. 284, 19255–19264 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Portevin, D. et al. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc. Natl. Acad. Sci. USA 101, 314–319 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Léger, M. et al. The dual function of the Mycobacterium tuberculosis FadD32 required for mycolic acid biosynthesis. Chem. Biol. 16, 510–519 (2009).

    Article  PubMed  CAS  Google Scholar 

  22. Carroll, P., Faray-Kele, M.C. & Parish, T. Identifying vulnerable pathways in Mycobacterium tuberculosis by using a knockdown approach. Appl. Environ. Microbiol. 77, 5040–5043 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sassetti, C.M. & Rubin, E.J. Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. USA 100, 12989–12994 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alland, D., Steyn, A.J., Weisbrod, T., Aldrich, K. & Jacobs, W.R. Jr. Characterization of the Mycobacterium tuberculosis iniBAC promoter, a promoter that responds to cell wall biosynthesis inhibition. J. Bacteriol. 182, 1802–1811 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maddry, J.A. et al. Antituberculosis activity of the molecular libraries screening center network library. Tuberculosis (Edinb.) 89, 354–363 (2009).

    Article  CAS  Google Scholar 

  26. Ananthan, S. et al. High-throughput screening for inhibitors of Mycobacterium tuberculosis H37Rv. Tuberculosis (Edinb.) 89, 334–353 (2009).

    Article  CAS  Google Scholar 

  27. Tahlan, K. et al. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 56, 1797–1809 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Telenti, A. et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat. Med. 3, 567–570 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Onodera, Y., Tanaka, M. & Sato, K. Inhibitory activity of quinolones against DNA gyrase of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 47, 447–450 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Trivedi, O.A. et al. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 428, 441–445 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Freundlich, J.S. et al. Triclosan derivatives: towards potent inhibitors of drug-sensitive and drug-resistant Mycobacterium tuberculosis. ChemMedChem 4, 241–248 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reddy, V.M., Einck, L., Andries, K. & Nacy, C.A. In vitro interactions between new antitubercular drug candidates SQ109 and TMC207. Antimicrob. Agents Chemother. 54, 2840–2846 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Siddiqi, S.H., Libonati, J.P. & Middlebrook, G. Evaluation of rapid radiometric method for drug susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol. 13, 908–912 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Safi, H., Sayers, B., Hazbon, M.H. & Alland, D. Transfer of embB codon 306 mutations into clinical Mycobacterium tuberculosis strains alters susceptibility to ethambutol, isoniazid, and rifampin. Antimicrob. Agents Chemother. 52, 2027–2034 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Middlebrook, G. Sterilization of tubercle bacilli by isonicotinic acid hydrazide and the incidence of variants resistant to the drug in vitro. Am. Rev. Tuberc. 65, 765–767 (1952).

    CAS  PubMed  Google Scholar 

  36. Siddiqi, S., Takhar, P., Baldeviano, C., Glover, W. & Zhang, Y. Isoniazid induces its own resistance in nonreplicating Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 51, 2100–2104 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gumbo, T. et al. Isoniazid bactericidal activity and resistance emergence: integrating pharmacodynamics and pharmacogenomics to predict efficacy in different ethnic populations. Antimicrob. Agents Chemother. 51, 2329–2336 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gumbo, T. et al. Isoniazid's bactericidal activity ceases because of the emergence of resistance, not depletion of Mycobacterium tuberculosis in the log phase of growth. J. Infect. Dis. 195, 194–201 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Wallis, R.S. et al. Drug tolerance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 43, 2600–2606 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Falzari, K. et al. In vitro and in vivo activities of macrolide derivatives against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 49, 1447–1454 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boechat, N. et al. Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain. J. Med. Chem. 54, 5988–5999 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Morris, G.M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Trott, O. & Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Šali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  PubMed  Google Scholar 

  45. Phetsuksiri, B. et al. Antimycobacterial activities of isoxyl and new derivatives through the inhibition of mycolic acid synthesis. Antimicrob. Agents Chemother. 43, 1042–1051 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kremer, L. et al. Inhibition of InhA activity, but not KasA activity, induces formation of a KasA-containing complex in mycobacteria. J. Biol. Chem. 278, 20547–20554 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Roujeinikova, A. et al. X-ray crystallographic studies on butyryl-ACP reveal flexibility of the structure around a putative acyl chain binding site. Structure 10, 825–835 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Parris, K.D. et al. Crystal structures of substrate binding to Bacillus subtilis holo-(acyl carrier protein) synthase reveal a novel trimeric arrangement of molecules resulting in three active sites. Structure 8, 883–895 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, R.E. et al. Combinatorial lead optimization of [1,2]-diamines based on ethambutol as potential antituberculosis preclinical candidates. J. Comb. Chem. 5, 172–187 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Jackson, M., Crick, D.C. & Brennan, P.J. Phosphatidylinositol is an essential phospholipid of mycobacteria. J. Biol. Chem. 275, 30092–30099 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Veyron-Churlet, R., Zanella-Cleon, I., Cohen-Gonsaud, M., Molle, V. & Kremer, L. Phosphorylation of the Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein reductase MabA regulates mycolic acid biosynthesis. J. Biol. Chem. 285, 12714–12725 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stover, C.K. et al. New use of BCG for recombinant vaccines. Nature 351, 456–460 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Kim, P. et al. Structure-activity relationships of antitubercular nitroimidazoles. 2. Determinants of aerobic activity and quantitative structure-activity relationships. J. Med. Chem. 52, 1329–1344 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van Soolingen, D., Hermans, P.W., de Haas, P.E., Soll, D.R. & van Embden, J.D. Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J. Clin. Microbiol. 29, 2578–2586 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Slayden, R.A. & Barry, C.E. III. Analysis of the lipids of Mycobacterium tuberculosis. Methods Mol. Med. 54, 229–245 (2001).

    CAS  PubMed  Google Scholar 

  56. Seeliger, J.C. et al. Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis. J. Biol. Chem. 287, 7990–8000 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Domenech, P. & Reed, M.B. Rapid and spontaneous loss of phthiocerol dimycocerosate (PDIM) from Mycobacterium tuberculosis grown in vitro: implications for virulence studies. Microbiology 155, 3532–3543 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Alibaud, L. et al. A Mycobacterium marinum TesA mutant defective for major cell wall–associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos. Mol. Microbiol. 80, 919–934 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, USA, 2002).

Download references

Acknowledgements

This work was supported in part by US National Institutes of Health (NIH) grant R01 AI080653 to D.A., a United Negro College Fund–Merck Postdoctoral Science Research Fellowship to R.W., a grant from the University of Medicine and Dentistry of New Jersey (UMDNJ) foundation to R.C. and NIH grant R01 AI081736 to M.B.N. W.R.J. acknowledges generous support from the NIH Centers for AIDS Research grant AI-051519 at the Albert Einstein College of Medicine and by NIH grant AI26170. The compounds initially screened in this work were supplied as part of NIH grants AI-95364 and AI-15449. We thank R.C. Goldman (formally Department of Health and Human Services, NIH, and Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), currently RCG Consulting) for his support obtaining Molecular Libraries Probe Centers Network (MLPCN) compounds for the piniBAC screen, R. Reynolds (Southern Research Institute) for his advice on the initial analysis of the MLPCN library and C.E. Barry, III and H.I.M. Boshoff (Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH) for their kind gift of TDM and TMM standards. The MS data were obtained from an Orbitrap instrument funded in part by NIH grant NS046593 for the support of the UMDNJ Neuroproteomics Core Facility.

Author information

Authors and Affiliations

Authors

Contributions

R.W., P.K., C.V., W.R.J., L.K. and D.A. conceived and designed experiments. J.S.F. synthesized compound JSF-1735, and M.J.S. and J.S.F. synthesized FAME standards. V.P. and M.B.N. performed computational docking studies. S.W.B. and J.R.W. performed whole-genome sequencing and analysis. R.W., P.K., C.V., R.V.-C., E.M., S.S., R.C. and L.K. performed whole-cell screening; performed MIC testing; selected resistant mutants; constructed recombinant strains; performed mycolic acid analyses; overexpression studies; and bactericidal, intracellular and synergy assays. R.W., P.K. and D.A. wrote the manuscript. All of the authors discussed the results and commented and contributed to sections of the manuscript.

Corresponding author

Correspondence to David Alland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 1458 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, R., Kumar, P., Parashar, V. et al. Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis. Nat Chem Biol 9, 499–506 (2013). https://doi.org/10.1038/nchembio.1277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1277

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research