Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalyst selection based on intermediate stability measured by mass spectrometry

Abstract

The power of natural selection through survival of the fittest is nature's ultimate tool for the improvement and advancement of species. To apply this concept in catalyst development is attractive and may lead to more rapid discoveries of new catalysts for the synthesis of relevant targets, such as pharmaceuticals. Recent advances in ligand synthesis using combinatorial methods have allowed the generation of a great diversity of catalysts. However, selection methods are few in number. We introduce a new selection method that focuses on the stability of catalytic intermediates measured by mass spectrometry. The stability of the intermediate relates inversely to the reactivity of the catalyst, which forms the basis of a catalyst-screening protocol in which less-abundant species represent the most-active catalysts, ‘the survival of the weakest’. We demonstrate this concept in the palladium-catalysed allylic alkylation reaction using diphosphine and IndolPhos ligands and support our results with high-level density functional theory calculations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Catalyst-selection method applied to the palladium-catalysed allylic substitution reaction using diphosphine ligands 1a–1c and 2a–2c.
Figure 2: ‘Survival of the weakest’ method applied in the IndolPhos-Pd catalysed allylic alkylation of rac-diphenylpropenyl acetate.

Similar content being viewed by others

References

  1. Reetz, M. T. Combinatorial and evolution-based methods in the creation of enantioselective catalysts. Angew. Chem. Int. Ed. 40, 284–310 (2001).

    Article  CAS  Google Scholar 

  2. Francis, M. B., Jamison, T. F. & Jacobsen, E. N. Combinatorial libraries of transition-metal complexes, catalysts and materials. Curr. Opin. Chem. Biol. 2, 422–428 (1998).

    Article  CAS  Google Scholar 

  3. Reetz, M. T. Combinatorial transition-metal catalysis: mixing monodentate ligands to control enantio-, diastereo-, and regioselectivity. Angew. Chem. Int. Ed. 47, 2556–2588 (2008).

    Article  CAS  Google Scholar 

  4. Goudriaan, P. E., van Leeuwen, P. W. N. M., Birkholz, M. N. & Reek, J. N. H. Libraries of bidentate phosphorus ligands; synthesis strategies and application in catalysis. Eur. J. Inorg. Chem. 2939–2958 (2008).

  5. Wennemers, H. Combinatorial chemistry: a tool for the discovery of new catalysts. Comb. Chem. High Throughput Screen. 4, 273–285 (2001).

    Article  CAS  Google Scholar 

  6. Krattiger, P., McCarthy, C., Pfaltz, A. & Wennemers, H. Catalyst–substrate coimmobilization: a strategy for catalysts discovery in split-and-mix libraries. Angew. Chem. Int. Ed. 42, 1722–1724 (2003).

    Article  CAS  Google Scholar 

  7. Traverse, J. F. & Snapper, M. L. High-throughput methods for the development of new catalytic asymmetric reactions. Drug Discov. Today 7, 1002–1012 (2002).

    Article  CAS  Google Scholar 

  8. Schultz, P. G. & Lerner, R. A. From molecular diversity to catalysis – lessons from the immune system. Science 269, 1835–1842 (1995).

    Article  CAS  Google Scholar 

  9. Brisig, B., Sanders, J. K. M. & Otto, S. Selection and amplification of a catalyst from a dynamic combinatorial library. Angew. Chem. Int. Ed. 42, 1270–1273 (2003).

    Article  CAS  Google Scholar 

  10. Polborn, K. & Severin, K. Molecular imprinting with an organometallic transition state analogue. Chem. Commun. 2481–2482 (1999).

  11. Polborn, K. & Severin, K. Biomimetic catalysis with immobilised organometallic ruthenium complexes: substrate- and regioselective transfer hydrogenation of ketones. Chem. Eur. J. 6, 4604–4611 (2000).

    Article  CAS  Google Scholar 

  12. Polborn, K. & Severin, K. Biomimetic catalysis with an immobilised chiral rhodium(iii) complex. Eur. J. Inorg. Chem. 1687–1692 (2000).

  13. Markert, C. & Pfaltz, A. Screening of chiral catalysts and catalyst mixtures by mass spectrometric monitoring of catalytic intermediates. Angew. Chem. Int. Ed. 43, 2498–2500 (2004).

    Article  CAS  Google Scholar 

  14. Markert, C., Neuburger, M., Kulicke, K., Meuwly, M. & Pfaltz, A. Palladium-catalyzed allylic substitution: reversible formation of allyl-bridged dinuclear palladium(i) complexes. Angew. Chem. Int. Ed. 46, 5892–5895 (2007).

    Article  CAS  Google Scholar 

  15. Markert, C., Rosel, P. & Pfaltz, A. Combinatorial ligand development based on mass spectrometric screening and a double mass-labeling strategy. J. Am. Chem. Soc. 130, 3234–3235 (2008).

    Article  CAS  Google Scholar 

  16. Teichert, A. & Pfaltz, A. Mass spectrometric screening of enantioselective Diels–Alder reactions. Angew. Chem. Int. Ed. 47, 3360–3362 (2008).

    Article  CAS  Google Scholar 

  17. di Lena, F. & Matyjaszewski, K. Rapid screening of atom transfer radical polymerization catalysts by electrospray ionization mass spectrometry. Chem. Commun. 6306–6308 (2008).

  18. di Lena, F. & Matyjaszewski, K. Investigation of metal ligand affinities of atom transfer radical polymerization catalysts with a quadrupole ion trap. Dalton Trans. 8884–8890 (2009).

  19. Chen, P. Electrospray ionization tandem mass spectrometry in high-throughput screening of homogeneous catalysts. Angew. Chem. Int. Ed. 42, 2832–2847 (2003).

    Article  CAS  Google Scholar 

  20. di Lena, F., Quintanilla, E. & Chen, P. Measuring rate constants for active species in the polymerization of ethylene by MAO-activated metallocene catalysts by electrospray ionization mass spectrometry. Chem. Commun. 5757–5759 (2005).

  21. Quintanilla, E., di Lena, F. & Chen, P. Chain transfer to aluminium in MAO-activated metallocene-catalyzed polymerization reactions. Chem. Commun. 4309–4311 (2006).

  22. Dietiker, R., di Lena, F. & Chen, P. Fourier transform ion mobility measurement of chain branching in mass-selected, chemically trapped oligomers from methylalumoxane-activated, metallocene-catalyzed polymerization of ethylene. J. Am. Chem. Soc. 129, 2796–2802 (2007).

    Article  CAS  Google Scholar 

  23. Hinderling, C. & Chen, P. Rapid screening of olefin polymerization catalyst libraries by electrospray ionization tandem mass spectrometry. Angew. Chem. Int. Ed. 38, 2253–2256 (1999).

    Article  CAS  Google Scholar 

  24. Hinderling, C. & Chen, P. Mass spectrometric assay of polymerization catalysts for combinational screening. Int. J. Mass Spectrom. 195-196, 377–383 (2000).

    Article  Google Scholar 

  25. Di Marco, V. B. & Bombi, G. G. Electrospray mass spectrometry (ESI-MS) in the study of metal–ligand solution equilibria. Mass Spectrom. Rev. 25, 347–379 (2006).

    Article  CAS  Google Scholar 

  26. Schalley, C. A. Supramolecular chemistry goes gas phase: the mass spectrometric examination of noncovalent interactions in host–guest chemistry and molecular recognition. Int. J. Mass Spectrom. 194, 11–39 (2000).

    Article  CAS  Google Scholar 

  27. Wortmann, A. et al. Shrinking droplets in electrospray ionization and their influence on chemical equilibria. J. Am. Soc. Mass Spectrom. 18, 385–393 (2007).

    Article  CAS  Google Scholar 

  28. Marcus, R. A. Theory of oxidation–reduction reactions involving electron transfer. 4. A statistical–mechanical basis for treating contributions from solvent, ligands, and inert salt. Discuss. Faraday Soc. 29, 21–31 (1960).

    Article  Google Scholar 

  29. Bonchev, P. R. & Aleksiev, A. A. Use of Marcus's theory for selecting activators of homogeneous catalytic reactions. Theor. Exp. Chem. 9, 191–195 (1973).

    CAS  Google Scholar 

  30. Leussing, D. L. Successful application of Marcus theory to catalysis by labile metal ions. Transition Metal Chem. 23, 771–781 (1998).

    Article  CAS  Google Scholar 

  31. Granberg, K. L. & Backvall, J. E. Isomerization of (pi-allyl)palladium complexes via nucleophilic displacement by palladium(0) – a common mechanism in palladium(0)-catalyzed allylic substitution. J. Am. Chem. Soc. 114, 6858–6863 (1992).

    Article  CAS  Google Scholar 

  32. Evans, L. A. et al. Counterintuitive kinetics in Tsuji–Trost allylation: ion-pair partitioning and implications for asymmetric catalysis. J. Am. Chem. Soc. 130, 14471–14473 (2008).

    Article  CAS  Google Scholar 

  33. Helmchen, G., Dahnz, A., Dubon, P., Schelwies, M. & Weihofen, R. Iridium-catalysed asymmetric allylic substitutions. Chem. Commun. 675–691 (2007).

  34. Corbett, P. T. et al. Dynamic combinatorial chemistry. Chem. Rev. 106, 3652–3711 (2006).

    Article  CAS  Google Scholar 

  35. van Haaren, R. J. et al. On the influence of the bite angle of bidentate phosphane ligands on the regioselectivity in allylic alkylation. Eur. J. Inorg. Chem. 1237–1241 (1999).

  36. van Haaren, R. J. et al. An X-ray study of the effect of the bite angle of chelating ligands on the geometry of palladium(allyl) complexes: implications for the regioselectivity in the allylic alkylation. Inorg. Chem. 40, 3363–3372 (2001).

    Article  CAS  Google Scholar 

  37. Atkins, P. & de Paula, J. Atkins's Physical Chemistry, 7th edn (Oxford Univ. Press, 2002).

    Google Scholar 

  38. te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).

    Article  CAS  Google Scholar 

  39. Bickelhaupt, F. M. & Baerends, E. J. in Reviews in Computational Chemistry Vol. 15 (eds Lipkowitz, K. B. & Boyd, D. B.) 1–86 (Wiley, 2000).

    Google Scholar 

  40. de Jong, G. T. & Bickelhaupt, F. M. Oxidative addition of the chloromethane C–Cl bond to Pd, an ab initio benchmark and DFT validation study. J. Chem. Theory Comput. 2, 322–335 (2006).

    Article  CAS  Google Scholar 

  41. Wassenaar, J. et al. INDOLPhosphole and INDOLPhos palladium–allyl complexes in asymmetric allylic alkylations. Organometallics 28, 2724–2734 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research School Combination – Catalysis, the European Union (RTN Revcat MRTN-CT-2006–035866) and the Netherlands Organization for Scientific Research (NWO-NCF and NWO-CW). The authors thank S. Ingemann and B. de Bruin for suggestions and discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.W., E.J. and J.N.H.R. conceived and designed the experiments and analysed the data. W.-J.v.Z. and F.M.B. conceived and designed the DFT calculations and analysed the data. M.A.S. and A.L.S. determined the X-ray crystal structure of 2b. J.W. and E.J. performed the experiments. W.-J.v.Z. performed the DFT calculations. J.W., F.M.B. and J.N.H.R. wrote the paper, and all the authors edited and commented on the manuscript.

Corresponding authors

Correspondence to F. Matthias Bickelhaupt or Joost N. H. Reek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 713 kb)

Supplementary information

Crystallographic data for compound 2b (CIF 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wassenaar, J., Jansen, E., van Zeist, WJ. et al. Catalyst selection based on intermediate stability measured by mass spectrometry. Nature Chem 2, 417–421 (2010). https://doi.org/10.1038/nchem.614

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.614

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing