Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Charge-shift bonding and its manifestations in chemistry

Abstract

Electron-pair bonding is a central chemical paradigm. Here, we show that alongside the two classical covalent and ionic bond families, there exists a class of charge-shift (CS) bonds wherein the electron-pair fluctuation has the dominant role. Charge-shift bonding shows large covalent–ionic resonance interaction energy, and depleted charge densities, and features typical to repulsive interactions, albeit the bond itself may well be strong. This bonding type is rooted in a mechanism whereby the bond achieves equilibrium defined by the virial ratio. The CS bonding territory involves, for example, homopolar bonds of compact electronegative and/or lone-pair-rich elements, heteropolar bonds of these elements among themselves and with other atoms (for example, the metalloids, such as silicon and germanium), hypercoordinated molecules, and bonds whose covalent components are weakened by exchange-repulsion strain (as in [1.1.1]propellane). Here, we discuss experimental manifestations of CS bonding in chemistry, and outline new directions demonstrating the portability of the new concept.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Valence bond computed energies (E) as functions of the interatomic distances (R) for some bonds.
Figure 2: Some ELF representations of electron density in a few typical cases.
Figure 3: Correlation of the charge-shift/covalent bond character with the repulsive/attractive nature of the covalent interaction, and with the electronegativities of the bonded atoms.

Similar content being viewed by others

References

  1. Lewis, G. N. The atom and the molecule. J. Am. Chem. Soc. 38, 762–785 (1916).

    Article  CAS  Google Scholar 

  2. Heitler, W. & London, F. Wechselwirkung neutraler atome un homöopolare bindung nach der quantenmechanik. Zeits. für Physik. 44, 455–472 (1927).

    Article  CAS  Google Scholar 

  3. Pauling, L. The Nature of the Chemical Bond (Cornell Univ. Press, 1939).

    Google Scholar 

  4. London, F. Zur quantentheorie der homöopolaren valenzzahlen. Zeits. für Physik A 46, 455–477 (1928).

    Article  CAS  Google Scholar 

  5. Shaik, S., Danovich, D., Silvi, B., Lauvergnat, D. & Hiberty, P. C. Charge-shift bonding – a class of electron-pair bonds that emerges from valence bond theory and is supported by the electron localization function approach. Chem. Eur. J. 11, 6358–6371 (2005).

    Article  CAS  Google Scholar 

  6. Bader, R. F. W. & Nguyen-Dang, T. T. Quantum theory of atoms in molecules–Dalton revisited. Adv. Quant. Chem. 14, 63–124 (1981).

    Article  CAS  Google Scholar 

  7. Henn, J., Ilge, D., Leusser, D., Stalke, D. & Engles, D. On the accuracy of theoretically and experimentally determined electron densities of polar bonds. J. Phys. Chem. A 108, 9442–9452 (2004).

    Article  CAS  Google Scholar 

  8. Apeloig, Y. in The Chemistry of Organic Silicon Compounds Vol. 1 (eds Apeloig, Y. & Rappoport, Z.) Ch. 2 (Wiley, 1989).

    Google Scholar 

  9. Apeloig, Y. & Stanger, A. The first demonstration of solvolytic generation of a simple silicenium ion (R3Si+). Access via 1,2-methyl migration. J. Am. Chem. Soc. 109, 272–273 (1987).

    Article  CAS  Google Scholar 

  10. Prakash, G. K. S. et al. Triphenylsilyl perchlorate revisited: 29Si and 35Cl NMR spectroscopy and X-ray crystallography showing covalent nature in both solution and the solid state. Difficulties in observing long-lived silyl cations in the condensed state. J. Am. Chem. Soc. 109, 5123–5126 (1987).

    Article  CAS  Google Scholar 

  11. Zhang, L., Ying, F., Wu, W., Hiberty, P. C. & Shaik, S. Topology of electron charge density for chemical bonds from valence bond theory: a probe of bonding types. Chem. Eur. J. 15, 2979–2989 (2009).

    Article  CAS  Google Scholar 

  12. Shaik, S., Maitre, P., Sini, G. & Hiberty, P. C. The charge-shift bonding concept. Electron-pair bonds with very large ionic-covalent resonance energies. J. Am. Chem. Soc. 114, 7861–7866 (1992).

    Article  CAS  Google Scholar 

  13. Lauvergnat, D., Hiberty, P. C., Danovich, D. & Shaik, S. Comparison of C-Cl and Si-Cl bonds. A valence bond study. J. Phys. Chem. 100, 5715–5720 (1996).

    Article  CAS  Google Scholar 

  14. Shurki, A., Hiberty, P. C. & Shaik, S. Charge-shift bonding in group IVB halides: a valence bond study of MH3-Cl (M = C, Si, Ge, Sn, Pb) molecules. J. Am. Chem. Soc. 121, 822–834 (1999).

    Article  CAS  Google Scholar 

  15. Galbraith, J. M., Blank, E., Shaik, S. & Hiberty, P. C. π-bonding in second and third row molecules: testing the strength of Linus's blanket. Chem. Eur. J. 6, 2425–2434 (2000).

    Article  CAS  Google Scholar 

  16. Hiberty, P. C., Megret, C., Song, L., Wu, W. & Shaik, S. Barriers of hydrogen abstraction vs halogen exchange: an experimental manifestation of charge-shift bonding. J. Am. Chem. Soc. 128, 2836–2843 (2006).

    Article  CAS  Google Scholar 

  17. Su, P., Song, L., Wu, W., Shaik, S. & Hiberty, P. C. Heterolytic bond dissociation in water: why is it so easy for C4H9Cl but not for C3H9SiCl? J. Phys. Chem. A 112, 2988–2997 (2008).

    Article  CAS  Google Scholar 

  18. Wu, W., Gu, J., Song, J., Shaik, S. & Hiberty, P. C. The inverted bond in [1.1.1]propellane is a charge-shift bond. Angew. Chem. Int. Ed. 48, 1407–1410 (2009).

    Article  CAS  Google Scholar 

  19. Bader, R. F. W. Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, 1990).

    Google Scholar 

  20. Silvi, B. & Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371, 683–686 (1994).

    Article  CAS  Google Scholar 

  21. Coppens, P. Charge densities come of age. Angew. Chem. Int. Ed. 44, 6810–6811 (2005).

    Article  CAS  Google Scholar 

  22. Coppens, P. X-ray Densities and Chemical Bonding (Oxford Univ. Press, 1997).

    Google Scholar 

  23. Kraka, E. & Cremer, D. in Theoretical Models of Chemical Bonding Part 2 (ed. Maksić, Z. B.) 457–543 (Springer, 1990).

    Google Scholar 

  24. Silvi, B. The spin-pair compositions as local indicators of the nature of the bonding. J. Phys. Chem. A 107, 3081–3085 (2003).

    Article  CAS  Google Scholar 

  25. Messershmidt, M. et al. Electron density and bonding at inverted carbon atoms: an experimental study of a [1.1.1]propellane derivative. Angew. Chem. Int. Ed. 44, 3925–3928 (2005).

    Article  Google Scholar 

  26. Polo, V., Andres, J. & Silvi, B. New insight on the bridge carbon-carbon bond in propellanes: a theoretical study based on the analysis of the electron localization function. J. Comput. Chem. 28, 857–864 (2007).

    Article  CAS  Google Scholar 

  27. Lusar, R., Beltrán, A., Andrés, J., Noury, S. & Silvi, B. Topological analysis of electron density in depleted homopolar chemical bonds. J. Comput. Chem. 20, 1517–1526 (1999).

    Article  Google Scholar 

  28. Rincon, L. & Almeida, R. On the topology of the electron charge density at the bond critical point of the electron-pair bond. J. Phys. Chem. A 102, 9244–9254 (1998).

    Article  CAS  Google Scholar 

  29. Kitaura, K. & Morokuma, K. A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int. J. Quantum Chem. 10, 325–340 (1976).

    Article  CAS  Google Scholar 

  30. Ziegler, T. & Rauk, A. On the calculation of bonding energies by the Hartree-Fock-Slater method. Theor. Chim. Acta 46, 1–10 (1977).

    Article  CAS  Google Scholar 

  31. Velde, G. T. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).

    Article  Google Scholar 

  32. Krapp, A., Bickelhaupt, F. M. & Frenking, G. Orbital overlap and chemical bonding. Chem. Eur. J. 12, 9196–9216 (2006).

    Article  CAS  Google Scholar 

  33. Hiberty, P. C., Ramozzi, R., Song, L., Wu, W. & Shaik. S. The physical origin of large covalent-ionic resonance energies in some two-electron bonds. Faraday Discuss. 135, 261–272 (2006).

    Article  Google Scholar 

  34. Kutzelnigg, W. in Theoretical Models of Chemical Bonding Part 2 (ed. Maksić, Z. B.) 1–44 (Springer, 1990).

    Google Scholar 

  35. Ruedenberg, K. The physical nature of the chemical bond. Rev. Mod. Phys. 34, 326–376 (1962).

    Article  CAS  Google Scholar 

  36. Feinberg, M. J. & Ruedenberg, K. Paradoxical role of the kinetic-energy operator in the formation of the covalent bond. J. Chem. Phys. 54, 1495–1591 (1971).

    Article  CAS  Google Scholar 

  37. Wilson, C. Q. & Goddard, W. A. III. The role of kinetic energy in chemical binding. Theor. Chim. Acta. 26, 195–210 (1972).

    Article  CAS  Google Scholar 

  38. Rozendaal, A. & Baerends, E. J. A momentum-space view of the chemical bond. I The first-row homonuclear diatomics. Chem. Phys. 95, 57–91 (1985).

    Article  CAS  Google Scholar 

  39. Ruedenberg, K. & Schmidt, M. Why does electron sharing lead to covalent bonding? A variational analysis. J. Comput. Chem. 28, 391–410 (2007).

    Article  CAS  Google Scholar 

  40. Bickelhaupt, F. M. & Baerends, E. J. Kohn-Sham density functional theory: predicting and understanding chemistry. Rev. Comput. Chem. 15, 1–86 (2000).

    CAS  Google Scholar 

  41. Sanderson, R. T. Polar Covalence (Academic Press, 1983).

    Google Scholar 

  42. Messerschmidt, M., Wagner, A., Wong, M. W. & Luger, P. Atomic properties of N2O4 based on its experimental charge density. J. Am. Chem. Soc. 124, 732–733 (2002).

    Article  CAS  Google Scholar 

  43. Dunitz, J. D. & Seiler, P. The absence of bonding electron density in certain covalent bonds as revealed by X-ray analysis. J. Am. Chem. Soc. 105, 7056–7058 (1983).

    Article  CAS  Google Scholar 

  44. Dunitz, J. D., Schweizer, W. B. & Seiler, P. X-ray study of the deformation density in tetrafluoroterephthalodinitrile: weak bonding density in the C-F bond. Helv. Chem. Acta 66, 123–133 (1983).

    Article  CAS  Google Scholar 

  45. Coppens, P., Yang, Y. W., Blessing, R. H., Cooper, W. F. & Larsen, F. K. The experimental charge distribution in sulfur containing molecules. Analysis of cyclic octasulfur at 300 and 100 K. J. Am. Chem. Soc. 99, 760–766 (1977).

    Article  CAS  Google Scholar 

  46. Savariault, J.-M. & Lehmann, M. S. Experimental determination of the deformation electron density in hydrogen peroxide by combination of X-ray and neutron diffraction measurements. J. Am. Chem. Soc. 102, 1298–1303 (1980).

    Article  CAS  Google Scholar 

  47. Ruedenberg, K. & Schwarz, W. H. E. Nonspherical atomic ground state densities and chemical deformation densities from x-ray scattering. J. Chem. Phys. 92, 4956–4969 (1990).

    Article  CAS  Google Scholar 

  48. Gomes de Mesquita, A. H., MacGillavry C. H. & Eriks, K. The structure of triphenylmethyl perchlorate at 85°C. Acta Crystallogr. 18, 437–443 (1965).

    Article  CAS  Google Scholar 

  49. Kim, K.-C. et al. Crystallographic evidence for a free silylium ion. Science 297, 825–827 (2002).

    Article  CAS  Google Scholar 

  50. Ploshnik, E. The Triple Bond – A Valence Bond Theory Point Of View MSc Thesis, Hebrew Univ. (2005).

    Google Scholar 

  51. Kost, D. & Kalikhman, I. Hypercoordinate silicon complexes based on hydrazine ligands. A remarkably flexible molecular system. Acc. Chem. Res. 42, 303–314 (2009).

    Article  CAS  Google Scholar 

  52. Dávalos, J. Z., Herrero, R., Abboud, J.-L. M., Mó, O. & Yáñez, M. How can carbon be covalently bound to five ligands? The case of Si2(CH3)7 . Angew. Chem. Int. Ed. 46, 381–385 (2007).

    Article  Google Scholar 

  53. Fernández, I., Uggerud, E. & Frenking, G. Stable pentacoordinate carbocations: structure and bonding. Chem. Eur. J. 13, 8620–8626 (2007).

    Article  Google Scholar 

  54. Panisch, R., Bolte, M. & Müller, T. Hydrogen and fluorine-bridged disilyl cations and their use in catalytic C-F activation. J. Am. Chem. Soc. 128, 9676–9682 (2006).

    Article  CAS  Google Scholar 

  55. Llusar, R., Beltran, A., Andrés, J., Fuster, F. & Silvi, B. Topological analysis of multiple metal-metal bonds in dimers of the M2(formamidinate)4 type with N = Nb, Mo, Tc, Ru, Rh, and Pd. J. Phys. Chem. A 105, 9460–9466 (2001).

    Article  CAS  Google Scholar 

  56. Shaik, S. in Molecules in Natural Science and Medicine: An Encomium for Linus Pauling (eds Maksić, Z. B. & Eckert-Maksić, M.) 253–266 (Ellis Horwood, 1991).

    Google Scholar 

  57. Cho, K. B., Carvajal, M. A. & Shaik, S. First half-reaction mechanisms of nitric oxide. The role of proton and oxygen coupled electron transfers in the reaction by quantum mechanical/ molecular mechanical calculations. J. Phys. Chem. B 113, 336–346 (2009).

    Article  CAS  Google Scholar 

  58. Grochala, W., Hoffmann, R., Feng, J. & Ashcroft, N. W. The chemical imagination at work in very tight places. Angew. Chem. Int. Ed. 46, 3620–3642 (2007).

    Article  CAS  Google Scholar 

  59. Dognon, J.-P., Clavaguéra C. & Pyykkö, P. A predicted organometallic series following a 32-electron principle: An@C28 (An=Th, Pa+, U2+, Pu4+). J. Am. Chem. Soc. 131, 238–243 (2009).

    Article  CAS  Google Scholar 

  60. Rupar, P., Staroverov, V. N. & Baines, K. M. A cryptand-encapsulated germanium(II) dication. Science 322, 1360–1363 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sason Shaik, Wei Wu or Philippe C. Hiberty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaik, S., Danovich, D., Wu, W. et al. Charge-shift bonding and its manifestations in chemistry. Nature Chem 1, 443–449 (2009). https://doi.org/10.1038/nchem.327

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.327

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing