Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly

Abstract

The preparation of well-defined nanoparticles based on soft matter, using solution-processing techniques on a commercially viable scale, is a major challenge of widespread importance. Self-assembly of block copolymers in solvents that selectively solvate one of the segments provides a promising route to core-corona nanoparticles (micelles) with a wide range of potential uses. Nevertheless, significant limitations to this approach also exist. For example, the solution processing of block copolymers generally follows a separate synthesis step and is normally performed at high dilution. Moreover, non-spherical micelles—which are promising for many applications—are generally difficult to access, samples are polydisperse and precise dimensional control is not possible. Here we demonstrate the formation of platelet and cylindrical micelles at concentrations up to 25% solids via a one-pot approach—starting from monomers—that combines polymerization-induced and crystallization-driven self-assembly. We also show that performing the procedure in the presence of small seed micelles allows the scalable formation of low dispersity samples of cylindrical micelles of controlled length up to three micrometres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representations of the preparation of polydisperse PIP-b-PFDMS cylindrical micelles.
Figure 2: PI-CDSA (at 10% w/w solids) of PIP-b-PFDMS at 10% v/v THF/n-hexanes with varying block ratios.
Figure 3: PI-CDSA (at 25% w/w solids) of PIP-b-PFDMS with a block ratio of 4.5:1.0 in 20% v/v THF/n-hexanes.
Figure 4: Living PI-CDSA (at 10% w/w solids) of PIP-b-PFDMS with a block ratio of approximately 5.3:1 in 10% v/v THF/n-hexanes.
Figure 5: AFM images of PIP-b-PFDMS cylindrical micelles (Ln = 560 nm, PDI = 1.04) prepared at 10% w/w solids by living PI-CDSA in 10% v/v THF/n-hexanes.

Similar content being viewed by others

References

  1. Hayward, R. C. & Pochan, D. J. Tailored assemblies of block copolymers in solution: it is all about the process. Macromolecules 43, 3577–3584 (2010).

    CAS  Google Scholar 

  2. Gröschel, A. H. et al. Guided hierarchical co-assembly of soft patchy nanoparticles. Nature 503, 247–251 (2013).

    PubMed  Google Scholar 

  3. Blanazs, A., Armes, S. P. & Ryan, A. J. Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol. Rapid Commun. 30, 267–277 (2009).

    CAS  PubMed  Google Scholar 

  4. Schacher, F. H., Rupar, P. A. & Manners, I. Functional block copolymers: nanostructured materials with emerging applications. Angew. Chem. Int. Ed. 51, 7898–7921 (2012).

    CAS  Google Scholar 

  5. Elsabahy, M. & Wooley, K. L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41, 2545–2561 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gröschel, A. H. & Müller, A. H. E. Self-assembly concepts for multicompartment nanostructures. Nanoscale 7, 11841–11876 (2015).

    PubMed  Google Scholar 

  7. Ge, Z. & Liu, S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev. 42, 7289–7325 (2013).

    CAS  PubMed  Google Scholar 

  8. Lodge, T. P. Block copolymers: past successes and future challenges. Macromol. Chem. Phys. 204, 265–273 (2003).

    CAS  Google Scholar 

  9. Canning, S. L., Smith, G. N. & Armes, S. P. A critical appraisal of RAFT-Mediated polymerization-induced self-assembly. Macromolecules 49, 1985–2001 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Derry, M. J., Fielding, L. A. & Armes, S. P. Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization. Prog. Polym. Sci. 52, 1–18 (2016).

    CAS  Google Scholar 

  11. Warren, N. J. & Armes, S. P. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc. 136, 10174–10185 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hawker, C. J., Bosman, A. W. & Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 101, 3661–3688 (2001).

    CAS  PubMed  Google Scholar 

  13. Moad, G., Rizzardo, E. & Thang, S. H. Living radical polymerization by the RAFT process—A first update. Aust. J. Chem. 59, 669–692 (2006).

    CAS  Google Scholar 

  14. Kamigaito, M., Ando, T. & Sawamoto, M. Metal-catalyzed living radical polymerization. Chem. Rev. 101, 3689–3746 (2001).

    CAS  PubMed  Google Scholar 

  15. Matyjaszewski, K. & Xia, J. Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990 (2001).

    CAS  PubMed  Google Scholar 

  16. Jia, Z., Bobrin, V. A., Truong, N. P., Gillard, M. & Monteiro, M. J. Multifunctional nanoworms and nanorods through a one-step aqueous dispersion polymerization. J. Am. Chem. Soc. 136, 5824–5827 (2014).

    CAS  PubMed  Google Scholar 

  17. Kim, K. H., Kim, J. & Jo, W. H. Preparation of hydrogel nanoparticles by atom transfer radical polymerization of N-isopropylacrylamide in aqueous media using PEG macro-initiator. Polymer 46, 2836–2840 (2005).

    CAS  Google Scholar 

  18. Sugihara, S., Sugihara (née Nishikawa), K., Armes, S. P., Ahmad, H. & Lewis, A. L. Synthesis of biomimetic poly(2-(methacryloyloxy)ethyl phosphorylcholine) nanolatexes via atom transfer radical dispersion polymerization in alcohol/water mixtures. Macromolecules 43, 6321–6329 (2010).

    CAS  Google Scholar 

  19. Delaittre, G., Nicolas, J., Lefay, C., Save, M. & Charleux, B. Surfactant-free synthesis of amphiphilic diblock copolymer nanoparticles via nitroxide-mediated emulsion polymerization. Chem. Commun. 5, 614–616 (2005).

    Google Scholar 

  20. An, Z. et al. Facile RAFT precipitation polymerization for the microwave-assisted synthesis of well-defined, double hydrophilic block copolymers and nanostructured hydrogels. J. Am. Chem. Soc. 129, 14493–14499 (2007).

    CAS  PubMed  Google Scholar 

  21. Delaittre, G., Save, M. & Charleux, B. Nitroxide-mediated aqueous dispersion polymerization: from water-soluble macroalkoxyamine to thermosensitive nanogels. Macromol. Rapid Commun. 28, 1528–1533 (2007).

    CAS  Google Scholar 

  22. Liu, G., Qiu, Q., Shen, W. & An, Z. Aqueous dispersion polymerization of 2-Methoxyethyl acrylate for the synthesis of biocompatible nanoparticles using a hydrophilic RAFT polymer and a redox initiator. Macromolecules 44, 5237–5245 (2011).

    CAS  Google Scholar 

  23. Sun, J.-T., Hong, C.-Y. & Pan, C.-Y. Formation of the block copolymer aggregates via polymerization-induced self-assembly and reorganization. Soft Matter 8, 7753 (2012).

    CAS  Google Scholar 

  24. He, W.-D., Sun, X.-L., Wan, W.-M. & Pan, C.-Y. Multiple morphologies of PAA-b-PSt assemblies throughout RAFT dispersion polymerization of styrene with PAA macro-CTA. Macromolecules 44, 3358–3365 (2011).

    CAS  Google Scholar 

  25. Cai, W., Wan, W., Hong, C.-Y., Huang, C.-Q. & Pan, C.-Y. Morphology transitions in RAFT polymerization. Soft Matter 6, 5554 (2010).

    CAS  Google Scholar 

  26. Zhang, X. et al. Well-defined amphiphilic block copolymers and nano-objects formed in situ via RAFT-mediated aqueous emulsion polymerization. Macromolecules 44, 4149–4158 (2011).

    CAS  Google Scholar 

  27. Huang, C.-Q. & Pan, C.-Y. Direct preparation of vesicles from one-pot RAFT dispersion polymerization. Polymer 51, 5115–5121 (2010).

    CAS  Google Scholar 

  28. Yang, P., Ratcliffe, L. P. D. & Armes, S. P. Efficient synthesis of poly(methacrylic acid)-block-Poly(styrene-alt-N-phenylmaleimide) diblock copolymer lamellae using RAFT dispersion polymerization. Macromolecules 46, 8545–8556 (2013).

    CAS  Google Scholar 

  29. Zhang, X. et al. Amphiphilic liquid-crystal block copolymer nanofibers via RAFT-mediated dispersion polymerization. Soft Matter 8, 1130–1141 (2012).

    CAS  Google Scholar 

  30. Semsarilar, M., Penfold, N. J. W., Jones, E. R. & Armes, S. P. Semi-crystalline diblock copolymer nano-objects prepared via RAFT alcoholic dispersion polymerization of stearyl methacrylate. Polym. Chem. 6, 1751–1757 (2015).

    CAS  Google Scholar 

  31. Lee, I. H. et al. Nanostar and nanonetwork crystals fabricated by in situ nanoparticlization of fully conjugated polythiophene diblock copolymers. J. Am. Chem. Soc. 135, 17695–17698 (2013).

    CAS  PubMed  Google Scholar 

  32. Lee, I. H., Amaladass, P. & Choi, T. L. One-pot synthesis of nanocaterpillar structures via in situ nanoparticlization of fully conjugated poly(p-phenylene)-block-polythiophene. Chem. Commun. 50, 7945–7948 (2014).

    CAS  Google Scholar 

  33. Yoon, K.-Y. et al. One-pot in situ fabrication of stable nanocaterpillars directly from polyacetylene diblock copolymers synthesized by mild ring-opening metathesis polymerization. J. Am. Chem. Soc. 134, 14291–14294 (2012).

    CAS  PubMed  Google Scholar 

  34. Weber, C. H. M. et al. Single lamella nanoparticles of polyethylene. Nano Lett. 7, 2024–2029 (2007).

    CAS  PubMed  Google Scholar 

  35. Gilroy, J. B. et al. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat. Chem. 2, 566–570 (2010).

    CAS  PubMed  Google Scholar 

  36. Yang, J.-X. et al. Hydrogen-bonding-mediated fragmentation and reversible self-assembly of crystalline micelles of block copolymer. Macromolecules 49, 367–372 (2016).

    CAS  Google Scholar 

  37. Petzetakis, N., Dove, A. P. & O'Reilly, R. K. Cylindrical micelles from the living crystallization-driven self-assembly of poly(lactide)-containing block copolymers. Chem. Sci. 2, 955–960 (2011).

    CAS  Google Scholar 

  38. Sun, L. et al. Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation. Nat. Commun. 5, 5746 (2014).

    CAS  PubMed  Google Scholar 

  39. Schmelz, J., Schedl, A. E., Steinlein, C., Manners, I. & Schmalz, H. Length control and block-type architectures in worm-like micelles with polyethylene cores. J. Am. Chem. Soc. 134, 14217–14225 (2012).

    CAS  PubMed  Google Scholar 

  40. Ogi, S., Stepanenko, V., Sugiyasu, K., Takeuchi, M. & Würthner, F. Mechanism of self-assembly process and seeded supramolecular polymerization of perylene bisimide organogelator. J. Am. Chem. Soc. 137, 3300–3307 (2015).

    CAS  PubMed  Google Scholar 

  41. Zhang, W. et al. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science. 334, 340–343 (2011).

    CAS  PubMed  Google Scholar 

  42. Ogi, S., Sugiyasu, K., Manna, S., Samitsu, S. & Takeuchi, M. Living supramolecular polymerization realized through a biomimetic approach. Nat. Chem. 6, 188–195 (2014).

    CAS  PubMed  Google Scholar 

  43. Qian, J. et al. Uniform, high aspect ratio fiber-like micelles and block co-micelles with a crystalline π-conjugated polythiophene core by self-seeding. J. Am. Chem. Soc. 136, 4121–4124 (2014).

    CAS  PubMed  Google Scholar 

  44. Robinson, M. E. et al. Length control of supramolecular polymeric nanofibers based on stacked planar platinum(II) complexes by seeded-growth. Chem. Commun. 51, 15921–15924 (2015).

    CAS  Google Scholar 

  45. Hailes, R. L. N., Oliver, A. M., Gwyther, J., Whittell, G. R. & Manners, I. Polyferrocenylsilanes: synthesis, properties, and applications. Chem. Soc. Rev. 45, 5358–5407 (2016).

    CAS  PubMed  Google Scholar 

  46. Wang, X. et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317, 644–647 (2007).

    CAS  PubMed  Google Scholar 

  47. Hudson, Z. M. et al. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nat. Chem. 6, 893–898 (2014).

    CAS  PubMed  Google Scholar 

  48. Qiu, H. et al. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science 352, 697–701 (2016).

    CAS  PubMed  Google Scholar 

  49. Hudson, Z. M., Lunn, D. J., Winnik, M. A. & Manners, I. Colour-tunable fluorescent multiblock micelles. Nat. Commun. 5, 3372 (2014).

    PubMed  Google Scholar 

  50. Cao, L., Manners, I. & Winnik, M. A. Influence of the interplay of crystallization and chain stretching on micellar morphologies: solution self-assembly of coil-crystalline poly(isoprene-block-ferrocenylsilane). Macromolecules 35, 8258–8260 (2002).

    CAS  Google Scholar 

  51. Massey, J. A. et al. Self-assembly of organometallic block copolymers: the role of crystallinity of the core-forming polyferrocene block in the micellar morphologies formed by poly(ferrocenylsilane-b-dimethylsiloxane) in n-alkane solvents. J. Am. Chem. Soc. 122, 11577–11584 (2000).

    CAS  Google Scholar 

  52. Gilroy, J. B. et al. Probing the structure of the crystalline core of field-aligned, monodisperse, cylindrical polyisoprene-block-polyferrocenylsilane micelles in solution using synchrotron small-and wide-angle X-ray scattering. J. Am. Chem. Soc. 133, 17056–17062 (2011).

    CAS  PubMed  Google Scholar 

  53. Ni, Y., Rulkens, R. & Manners, I. Transition metal-based polymers with controlled architectures: well-defined poly(ferrocenylsilane) homopolymers and multiblock copolymers via the living anionic ring-opening polymerization of silicon-bridged [1]ferrocenophanes. J. Am. Chem. Soc. 118, 4102–4114 (1996).

    CAS  Google Scholar 

Download references

Acknowledgements

C.E.B. thanks the Bristol Chemical Synthesis Centre for Doctoral Training, funded by the Engineering and Physical Sciences Research Council (EPSRC) for a PhD studentship. J.G. thanks the EPSRC for funding. D.W.H. thanks the EPSRC-funded Bristol Centre for Functional Nanomaterials doctoral training grant (EP/G036780/1).

Author information

Authors and Affiliations

Authors

Contributions

C.E.B. and J.G. contributed equally to this work. C.E.B. and J.G. devised the project and carried out the experiments. R.L.H performed AFM experiments. D.W.H. performed the scattering experiments. C.E.B., J.G. and I.M. wrote the manuscript with input from D.W.H. The project was supervised by I.M.

Corresponding author

Correspondence to Ian Manners.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boott, C., Gwyther, J., Harniman, R. et al. Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly. Nature Chem 9, 785–792 (2017). https://doi.org/10.1038/nchem.2721

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2721

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing