Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Terahertz echoes reveal the inhomogeneity of aqueous salt solutions

Abstract

The structural and dynamical properties of water are known to be affected by ion solvation. However, a consistent molecular picture that describes how and to what extent ions perturb the water structure is still missing. Here we apply 2D Raman–terahertz spectroscopy to investigate the impact of monatomic cations on the relaxation dynamics of the hydrogen-bond network in aqueous salt solutions. The inherent ability of multidimensional spectroscopy to deconvolute heterogeneous relaxation dynamics is used to reveal the correlation between the inhomogeneity of the collective intermolecular hydrogen-bond modes and the viscosity of a salt solution. Specifically, we demonstrate that the relaxation time along the echo direction t1 = t2 correlates with the capability of a given cation to ‘structure’ water. Moreover, we provide evidence that the echo originates from the water–water modes, and not the water–cation modes, which implies that cations can structure the hydrogen-bond network to a certain extent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Raman–THz–THz pulse sequence.
Figure 2: 2D Raman–THz–THz responses of 2 M aqueous salt solutions.
Figure 3: Averaged relaxation time 〈τ 〉 as a function of the B coefficient of the cation (from ref. 5).
Figure 4: 2D Raman–THz response of a 2 M SrBr2 solution.

Similar content being viewed by others

References

  1. Debenedetti, P. G. Supercooled and glassy water. J. Phys. Condens. Matter 15, R1669–R1726 (2003).

    CAS  Google Scholar 

  2. Stanley, H. E. et al. Liquid polyamorphism: possible relation to the anomalous behaviour of water. Eur. Phys. J. Special Topics 161, 1–17 (2008).

    Google Scholar 

  3. Sutera, S. P. & Skalak, R. The history of Poiseuille's law. Annu. Rev. Fluid Mech. 25, 1–20 (1993).

    Google Scholar 

  4. Jones, G. & Dole, M. The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929).

    CAS  Google Scholar 

  5. Jenkins, H. D. B. & Marcus, Y. Viscosity B-coefficients of ions in solution. Chem. Rev. 95, 2695–2724 (1995).

    CAS  Google Scholar 

  6. Gurney, R. W. Ionic Processes in Solution (McGraw–Hill, 1953).

    Google Scholar 

  7. Frank, H. S. & Wen, W.-Y. Ion–solvent interaction. Structural aspects of ion–solvent interaction in aqueous solutions: a suggested picture of water structure . Discuss. Faraday Soc. 24, 133–140 (1957).

    Google Scholar 

  8. Struis, R. P. W. J., Bleijser, J. D. & Leyte, J. C. 25Mg2+ and 35Cl quadrupolar relaxation in aqueous MgCl2 solutions at 25 °C. 2. Relaxation at finite MgCl2 concentrations. J. Phys. Chem. 93, 7943–7952 (1989).

    CAS  Google Scholar 

  9. Buchner, R., Chen, T. & Hefter, G. Complexity in ‘simple’ electrolyte solutions: ion pairing in MgSO4(aq). J. Phys. Chem. B 108, 2365–2375 (2004).

    CAS  Google Scholar 

  10. Wachter, W., Kunz, W., Buchner, R. & Hefter, G. Is there an anionic Hofmeister effect on water dynamics? Dielectric spectroscopy of aqueous solutions of NaBr, NaI, NaNO3, NaClO4, and NaSCN. J. Phys. Chem. A 109, 8675–8683 (2005).

    CAS  PubMed  Google Scholar 

  11. Turton, D. A., Hunger, J., Hefter, G., Buchner, R. & Wynne, K. Glasslike behavior in aqueous electrolyte solutions. J. Chem. Phys. 128, 161102 (2008).

    PubMed  Google Scholar 

  12. Näslund, L.-Å. et al. X-ray absorption spectroscopy study of the hydrogen bond network in the bulk water of aqueous solutions. J. Phys. Chem. A 109, 5995–6002 (2005).

    PubMed  Google Scholar 

  13. Mancinelli, R., Botti, A., Bruni, F., Ricci, M. A. & Soper, A. K. Perturbation of water structure due to monovalent ions in solution. Phys. Chem. Chem. Phys. 9, 2959–2967 (2007).

    CAS  PubMed  Google Scholar 

  14. Bruni, F., Imberti, S., Mancinelli, R. & Ricci, M. A. Aqueous solutions of divalent chlorides: ions hydration shell and water structure. J. Chem. Phys. 136, 064520 (2012).

    CAS  PubMed  Google Scholar 

  15. Omta, A. W., Kropman, M. F., Woutersen, S. & Bakker, H. J. Negligible effect of ions on the hydrogen-bond structure in liquid water. Science 301, 347–349 (2003).

    CAS  PubMed  Google Scholar 

  16. Kropman, M. F. & Bakker, H. J. Effect of ions on the vibrational relaxation of liquid water. J. Am. Chem. Soc. 126, 9135–9141 (2004).

    CAS  PubMed  Google Scholar 

  17. Park, S. & Fayer, M. D. Hydrogen bond dynamics in aqueous NaBr solutions. Proc. Natl Acad. Sci. USA 104, 16731–16738 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Moilanen, D. E., Wong, D., Rosenfeld, D. E., Fenn, E. E. & Fayer, M. D. Ion–water hydrogen-bond switching observed with 2D IR vibrational echo chemical exchange spectroscopy. Proc. Natl Acad. Sci. USA 106, 375–380 (2009).

    CAS  PubMed  Google Scholar 

  19. Tielrooij, K. J., Garcia-Araez, N., Bonn, M. & Bakker, H. J. Cooperativity in ion hydration. Science 328, 1006–1009 (2010).

    CAS  PubMed  Google Scholar 

  20. Stirnemann, G., Wernersson, E., Jungwirth, P. & Laage, D. Mechanisms of acceleration and retardation of water dynamics by ions. J. Am. Chem. Soc. 135, 11824–11831 (2013).

    CAS  PubMed  Google Scholar 

  21. Zhang, R. & Zhuang, W. Cation effect in the ionic solution optical Kerr effect measurements: a simulation study. J. Chem. Phys. 140, 054507 (2014).

    PubMed  Google Scholar 

  22. Heisler, I. A. & Meech, S. R. Low-frequency modes of aqueous alkali halide solutions: glimpsing the hydrogen bonding vibration. Science 327, 857–860 (2010).

    CAS  PubMed  Google Scholar 

  23. Heisler, I. A., Mazur, K. & Meech, S. R. Low-frequency modes of aqueous alkali halide solutions: an ultrafast optical Kerr effect study. J. Phys. Chem. B 115, 1863–1873 (2011).

    CAS  PubMed  Google Scholar 

  24. Bertie, J. E. & Lan, Z. Infrared intensities of liquids XX. The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(l) at 25 °C between 15,000 and 1 cm–1. Appl. Spectrosc. 50, 1047–1057 (1996).

    CAS  Google Scholar 

  25. Mazur, K., Heisler, I. A. & Meech, S. R. Thz spectra and dynamics of aqueous solutions studied by the ultrafast optical Kerr effect. J. Phys. Chem. B 115, 2563–2573 (2011).

    CAS  PubMed  Google Scholar 

  26. Torre, R., Bartolini, P. & Righini, R. Structural relaxation in supercooled water by time-resolved spectroscopy. Nature 428, 296–299 (2004).

    CAS  PubMed  Google Scholar 

  27. Fukasawa, T. et al. Relation between dielectric and low-frequency Raman spectra of hydrogen-bond liquids. Phys. Rev. Lett. 95, 197802 (2005).

    PubMed  Google Scholar 

  28. Loring, R. F. & Mukamel, S. Selectivity in coherent transient Raman measurements of vibrational dephasing in liquids. J. Chem. Phys. 83, 2116–2128 (1985).

    CAS  Google Scholar 

  29. Hamm, P. & Zanni, M. T. Concepts and Methods of 2D Infrared Spectroscopy (Cambridge Univ. Press, 2011).

    Google Scholar 

  30. Hwang, H. Y. et al. A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses. J. Mod. Opt. 62, 1447–1479 (2015).

    CAS  Google Scholar 

  31. Kuehn, W. et al. Strong correlation of electronic and lattice excitations in GaAs/AlGaAs semiconductor quantum wells revealed by two-dimensional terahertz spectroscopy. Phys. Rev. Lett. 107, 067401 (2011).

    CAS  PubMed  Google Scholar 

  32. Fleischer, S., Field, R. W. & Nelson, K. A. Commensurate two-quantum coherences induced by time-delayed THz fields. Phys. Rev. Lett. 109, 123603 (2012).

    PubMed  Google Scholar 

  33. Tanimura, Y. & Mukamel, S. Two-dimensional femtosecond vibrational spectroscopy of liquids. J. Chem. Phys. 99, 9496–9511 (1993).

    CAS  Google Scholar 

  34. Blank, D. A., Kaufman, L. J. & Fleming, G. R. Fifth-order two-dimensional Raman spectra of CS2 are dominated by third-order cascades. J. Chem. Phys. 111, 3105–3114 (1999).

    CAS  Google Scholar 

  35. Golonzka, O., Demirdöven, N., Khalil, M. & Tokmakoff, A. Separation of cascaded and direct fifth-order Raman signals using phase-sensitive intrinsic heterodyne detection. J. Chem. Phys. 113, 9893–9896 (2000).

    CAS  Google Scholar 

  36. Kaufman, L. J., Heo, J., Ziegler, L. D. & Fleming, G. R. Heterodyne-detected fifth-order nonresonant Raman scattering from room temperature CS2 . Phys. Rev. Lett. 88, 207402 (2002).

    PubMed  Google Scholar 

  37. Kubarych, K. J., Milne, C. J. & Miller, R. J. D. Fifth-order two-dimensional Raman spectroscopy: a new direct probe of the liquid state. Int. Rev. Phys. Chem. 22, 497–532 (2003).

    CAS  Google Scholar 

  38. Li, Y. L., Huang, L., Miller, R. J. D., Hasegawa, T. & Tanimura, Y. Two-dimensional fifth-order Raman spectroscopy of liquid formamide: experiment and theory. J. Chem. Phys. 128, 234507 (2008).

    CAS  PubMed  Google Scholar 

  39. Frostig, H., Bayer, T., Dudovic, N., Eldar, Y. C. & Silberberg, Y. Single-beam spectrally controlled two-dimensional Raman spectroscopy. Nat. Photon. 9, 339–343 (2015).

    CAS  Google Scholar 

  40. Hamm, P. & Savolainen, J. Two-dimensional-Raman–terahertz spectroscopy of water: theory. J. Chem. Phys. 136, 094516 (2012).

    PubMed  Google Scholar 

  41. Hamm, P., Savolainen, J., Ono, J. & Tanimura, Y. Note: inverted time-ordering in two-dimensional-Raman–terahertz spectroscopy of water. J. Chem. Phys. 136, 236101 (2012).

    PubMed  Google Scholar 

  42. Savolainen, J., Ahmed, S. & Hamm, P. Two-dimensional Raman–terahertz spectroscopy of water. Proc. Natl Acad. Sci. USA 110, 20402–20407 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Savolainen, J., Uhlig, F., Ahmed, S., Hamm, P. & Jungwirth, P. Direct observation of the collapse of the delocalized excess electron in water. Nat. Chem. 6, 697–701 (2014).

    CAS  PubMed  Google Scholar 

  44. Funkner, S. et al. Watching the low-frequency motions in aqueous salt solutions: the terahertz vibrational signatures of hydrated ions. J. Am. Chem. Soc. 134, 1030–1035 (2012).

    CAS  PubMed  Google Scholar 

  45. Finneran, I. A., Welsch, R., Allodi, M. A., Miller III, T. F. & Blake, G. A. Coherent two-dimensional terahertz–terahertz–Raman spectroscopy. Proc. Natl Acad. Sci. USA 113, 6857–6861 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Asbury, J. B. et al. Dynamics of water probed with vibrational echo correlation spectroscopy. J. Chem. Phys. 121, 12431–12446 (2004).

    CAS  PubMed  Google Scholar 

  47. Yeremenko, S., Pshenichnikov, M. S. & Wiersma, D. A. Hydrogen-bond dynamics in water explored by heterodyne-detected photon echo. Chem. Phys. Lett. 369, 107–113 (2003).

    CAS  Google Scholar 

  48. Cowan, M. L. et al. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 434, 199–202 (2005).

    CAS  PubMed  Google Scholar 

  49. Eaves, J. D. et al. Hydrogen bonds in liquid water are broken only fleetingly. Proc. Natl Acad. Sci. USA 102, 13019–13022 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Schmidt, D. A. et al. Rattling in the cage: ions as probes of sub-picosecond water network dynamics. J. Am. Chem. Soc. 131, 18512–18517 (2009).

    CAS  PubMed  Google Scholar 

  51. Torii, H. Ultrafast anisotropy decay of coherent excitations and the non-coincidence effect for delocalized vibrational modes in liquids. Chem. Phys. Lett. 323, 382–388 (2000).

    CAS  Google Scholar 

  52. Ito, H., Hasegawa, T. & Tanimura, Y. Calculating two-dimensional THz–Raman–THz and Raman–THz–THz signals for various molecular liquids: the samplers. J. Chem. Phys. 141, 124503 (2014).

    PubMed  Google Scholar 

  53. Ito, H., Jo, J.-Y. & Tanimura, Y. Notes on simulating two-dimensional Raman and terahertz–Raman signals with a full molecular dynamics simulation approach. Struct. Dyn. 2, 054102 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Ikeda, T., Ito, H. & Tanimura, Y. Analysis of 2D THz–Raman spectroscopy using a non-Markovian Brownian oscillator model with nonlinear system–bath interactions. J. Chem. Phys. 142, 212421 (2015).

    PubMed  Google Scholar 

  55. Ito, H. & Tanimura, Y. Simulating two-dimensional infrared–Raman and Raman spectroscopies for intermolecular and intramolecular modes of liquid water. J. Chem. Phys. 144, 074201 (2016).

    PubMed  Google Scholar 

  56. Fourkas, J. T. Multidimensional Raman spectroscopies. Adv. Chem. Phys. 117, 235–273 (2001).

    CAS  Google Scholar 

  57. Pan, Z. et al. Low frequency 2D Raman–THz spectroscopy of ionic solution: a simulation study. J. Chem. Phys. 142, 212419 (2015).

    PubMed  Google Scholar 

  58. Hamm, P. 2D-Raman–THz spectroscopy: a sensitive test of polarizable water models. J. Chem. Phys. 141, 184201 (2014).

    PubMed  Google Scholar 

  59. Tröster, P., Lorenzen, K., Schwörer, M. & Tavan, P. Polarizable water models from mixed computational and empirical optimization. J. Phys. Chem. B 117, 9486–9500 (2013).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. J. M. Johnson for many insightful discussions. The work has been supported by the Swiss National Science Foundation (SNF) through the NCCR MUST.

Author information

Authors and Affiliations

Authors

Contributions

A.S., J.S and P.H. conceived and designed the experiments. A.S. and S.A. performed the experiments. A.S analysed the data. A.S. and P.H. co-wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Peter Hamm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalit, A., Ahmed, S., Savolainen, J. et al. Terahertz echoes reveal the inhomogeneity of aqueous salt solutions. Nature Chem 9, 273–278 (2017). https://doi.org/10.1038/nchem.2642

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2642

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing