Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation

Abstract

The conversion of inexpensive, saturated hydrocarbon feedstocks into value-added speciality chemicals using regiospecific, catalytic functionalization of alkanes is a major goal of organometallic chemistry. Linear alkylsilanes represent one such speciality chemical—they have a wide range of applications, including release coatings, silicone rubbers and moulding products. Direct, selective, functionalization of alkanes at primary C–H bonds is difficult and, to date, methods for catalytically converting alkanes into linear alkylsilanes are unknown. Here, we report a well-defined, dual-catalyst system for one-pot, two-step alkane silylations. The system comprises a pincer-ligated Ir catalyst for alkane dehydrogenation and an Fe catalyst that effects a subsequent tandem olefin isomerization–hydrosilylation. This method exhibits exclusive regioselectivity for the production of terminally functionalized alkylsilanes. This dual-catalyst strategy has also been applied to regioselective alkane borylations to form linear alkylboronate esters.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of tandem dehydrogenation–isomerization–hydrosilylation for conversion of alkanes to linear alkylsilanes.

Similar content being viewed by others

References

  1. Choi, J., MacArthur, A. H. R., Brookhart, M. & Goldman, A. S. Dehydrogenation and related reactions catalyzed by iridium pincer complexes. Chem. Rev. 111, 1761–1779 (2011).

    Article  CAS  Google Scholar 

  2. Ojima, I. in The Chemistry of Organic Silicon Compounds Vol. 2 (eds Patai, S. & Rappoport, Z.) Ch. 25, 1479–1526 (Wiley-Interscience, 1989).

    Book  Google Scholar 

  3. Pukhnarevitch, V. B., Lukevics, E., Kopylova, L. I. & Voronkov, M. Perspectives of Hydrosilylation (Institute for Organic Synthesis, 1992).

    Google Scholar 

  4. Blanksby, S. J. & Ellison, G. B. Bond dissociation energies of organic molecules. Acc. Chem. Res. 36, 255–263 (2003).

    Article  CAS  Google Scholar 

  5. Hartwig, J. F. Carbon-heteroatom bond formation catalysed by organometallic complexes. Nature 455, 314–322 (2008).

    Article  CAS  Google Scholar 

  6. Bergman, R. G. Organometallic chemistry: C–H activation. Nature 446, 391–393 (2007).

    Article  CAS  Google Scholar 

  7. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).

    Article  CAS  Google Scholar 

  8. Caballero, A. et al. Highly regioselective functionalization of aliphatic carbon–hydrogen bonds with a perbromohomoscorpionate copper(I) catalyst. J. Am. Chem. Soc. 125, 1446–1447 (2003).

    Article  CAS  Google Scholar 

  9. Caballero, A. et al. Silver-catalyzed C–C bond formation between methane and ethyl diazoacetate in supercritical CO2 . Science 332, 835–838 (2011).

    Article  CAS  Google Scholar 

  10. Tse, C.-W. et al. Nonheme iron mediated oxidation of light alkanes with oxone: characterization of reactive oxoiron(IV) ligand cation radical intermediates by spectroscopic studies and DFT calculations. Angew. Chem. Int. Ed. 53, 798–803 (2014).

    Article  CAS  Google Scholar 

  11. Ortiz de Montellano, P. R. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev. 110, 932–948 (2010).

    Article  CAS  Google Scholar 

  12. Wenzel, T. T. & Bergman, R. G. Inter- and intramolecular insertion of rhenium into carbon–hydrogen bonds. J. Am. Chem. Soc. 108, 4856–4867 (1986).

    Article  CAS  Google Scholar 

  13. Jones, W. D. & Feher, F. J. Alkane carbon–hydrogen bond activation by homogeneous rhodium(I) compounds. Organometallics 2, 562–563 (1983).

    Article  CAS  Google Scholar 

  14. Sakakura, T. & Tanaka, M. Efficient catalytic C–H activation of alkanes: regioselective carbonylation of the terminal methyl group of n-pentane by RhCl(CO)(PMe3)2 . J. Chem. Soc. Chem.Commun. 758–759 (1987).

  15. Liu, F., Pak, E. B., Singh, B., Jensen, C. M. & Goldman, A. S. Dehydrogenation of n-alkanes catalyzed by iridium ‘pincer’ complexes: regioselective formation of α-olefins. J. Am. Chem. Soc. 121, 4086–4087 (1999).

    Article  CAS  Google Scholar 

  16. Chen, H., Schlecht, S., Semple, T. C. & Hartwig, J. F. Thermal, catalytic, regiospecific functionalization of alkanes. Science 287, 1995–1997 (2000).

    Article  CAS  Google Scholar 

  17. Marciniec, B. Catalysis by transition metal complexes of alkene silylation—recent progress and mechanistic implications. Coord. Chem. Rev. 249, 2374–2390 (2005).

    Article  CAS  Google Scholar 

  18. Marciniec, B. Comprehensive Handbook on Hydrosilylation (Pergamon, 1992).

    Google Scholar 

  19. Speier, J. L. in Advances in Organometallic Chemistry. Vol. 17 (eds Stone, F. G. A. & West, R.) 407–447 (Academic, 1979).

    Google Scholar 

  20. Holwell, A. J. Global release liner industry conference 2008. Platinum Metals Rev. 52, 243–246 (2008).

    Article  Google Scholar 

  21. Keim, W. Oligomerization of ethylene to α-olefins: discovery and development of the shell higher olefin process (SHOP). Angew. Chem. Int. Ed. 52, 12492–12496 (2013).

    Article  CAS  Google Scholar 

  22. Tsukada, N. & Hartwig, J. F. Intermolecular and intramolecular, platinum-catalyzed, acceptorless dehydrogenative coupling of hydrosilanes with aryl and aliphatic methyl C–H bonds. J. Am. Chem. Soc. 127, 5022–5023 (2005).

    Article  CAS  Google Scholar 

  23. Simmons, E. M. & Hartwig, J. F. Catalytic functionalization of unactivated primary C–H bonds directed by an alcohol. Nature 483, 70–73 (2012).

    Article  CAS  Google Scholar 

  24. Sadow, A. D. & Tilley, T. D. Catalytic functionalization of hydrocarbons by σ-bond-metathesis chemistry: dehydrosilylation of methane with a scandium catalyst. Angew. Chem. Int. Ed. 42, 803–805 (2003).

    Article  CAS  Google Scholar 

  25. Yao, W., Zhang, Y., Jia, X. & Huang, Z. Selective catalytic transfer dehydrogenation of alkanes and heterocycles by an iridium pincer complex. Angew. Chem. Int. Ed. 53, 1390–1394 (2014).

    Article  CAS  Google Scholar 

  26. Kundu, S. et al. Rational design and synthesis of highly active pincer–iridium catalysts for alkane dehydrogenation. Organometallics 28, 5432–5444 (2009).

    Article  CAS  Google Scholar 

  27. Chowdhury, A. D. et al. Towards a practical development of light-driven acceptorless alkane dehydrogenation. Angew. Chem. Int. Ed. 53, 6477–6481 (2014).

    Article  Google Scholar 

  28. Buslov, I. et al. Chemoselective alkene hydrosilylation catalyzed by nickel pincer complexes. Angew. Chem. Int. Ed. 54, 14523–14526 (2015).

    Article  CAS  Google Scholar 

  29. Chen, C. et al. Rapid, regioconvergent, solvent-free alkane hydrosilylation with a cobalt catalyst. J. Am. Chem. Soc. 137, 13244–13247 (2015).

    Article  CAS  Google Scholar 

  30. Zhang, L., Peng, D., Leng, X. & Huang, Z. Iron-catalyzed, atom-economical, chemo- and regioselective alkene hydroboration with pinacolborane. Angew. Chem. Int. Ed. 52, 3676–3680 (2013).

    Article  CAS  Google Scholar 

  31. Tondreau, A. M. et al. Iron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanes. Science 335, 567–570 (2012).

    Article  CAS  Google Scholar 

  32. Greenhalgh, M. D., Frank, D. J. & Thomas, S. P. Iron-catalysed chemo-, regio-, and stereoselective hydrosilylation of alkenes and alkynes using a bench-stable iron(II) pre-catalyst. Adv. Synth. Catal. 356, 584–590 (2014).

    Article  CAS  Google Scholar 

  33. Obligacion, J. V. & Chirik, P. J. Highly selective bis(imino)pyridine iron-catalyzed alkene hydroboration. Org. Lett. 15, 2680–2683 (2013).

    Article  CAS  Google Scholar 

  34. Bart, S. C., Lobkovsky, E. & Chirik, P. J. Preparation and molecular and electronic structures of iron(0) dinitrogen and silane complexes and their application to catalytic hydrogenation and hydrosilation. J. Am. Chem. Soc. 126, 13794–13807 (2004).

    Article  CAS  Google Scholar 

  35. Obligacion, J. V. & Chirik, P. J. Bis(imino)pyridine cobalt-catalyzed alkene isomerization-hydroboration: a strategy for remote hydrofunctionalization with terminal selectivity. J. Am. Chem. Soc. 135, 19107–19110 (2013).

    Article  CAS  Google Scholar 

  36. Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine (Wiley-VCH, 2005).

    Book  Google Scholar 

  37. Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd,Ni,Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).

    Article  CAS  Google Scholar 

  38. Brown, H. C. Organic Synthesis Via Organoboranes (Wiley Interscience, 1975).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Basic Research Program of China (2015CB856600), the National Natural Science Foundation of China (21422209, 21432011, 21421091) and the Science and Technology Commission of Shanghai Municipality (13JC1406900). The authors thank Y. Tang for suggestions and comments.

Author information

Authors and Affiliations

Authors

Contributions

Z.H. directed the project and wrote the manuscript. X.J. carried out the reactions.

Corresponding author

Correspondence to Zheng Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Huang, Z. Conversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation. Nature Chem 8, 157–161 (2016). https://doi.org/10.1038/nchem.2417

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2417

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing