Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conversion of 1-alkenes into 1,4-diols through an auxiliary-mediated formal homoallylic C–H oxidation

Abstract

The ubiquitous nature of C–H bonds in organic molecules makes them attractive as a target for rapid complexity generation, but brings with it the problem of achieving selective reactions. In developing new methodologies for C–H functionalization, alkenes are an attractive starting material because of their abundance and low cost. Here we describe the conversion of 1-alkenes into 1,4-diols. The method involves the installation of a new Si,N-type chelating auxiliary group on the alkene followed by iridium-catalysed C–H silylation of an unactivated δ-C(sp3)–H bond to produce a silolane intermediate. Oxidation of the C–Si bonds affords a 1,4-diol. The method is demonstrated to have broad scope and good functional group compatibility by application to the selective 1,4-oxygenation of several natural products and derivatives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of 1,4-diols from 1-alkenes and alkyl halides.
Figure 2: Conversion of silacycle intermediates 3 into 1,4-diol derivatives 4.
Figure 3: 1,4-Oxygenation of alkene-containing natural products and derivatives.

Similar content being viewed by others

References

  1. Yu, J-Q., Shi, Z. C–H Activation (Topics in Current Chemistry 292, Springer, 2010).

    Book  Google Scholar 

  2. Engle, K. M., Mei, T-S., Wasa, M. & Yu, J-Q. Weak coordination as a powerful means for developing broadly useful C–H functionalization reactions. Acc. Chem. Res. 45, 788–802 (2011).

    Article  Google Scholar 

  3. Wencel-Delord, J., Droge, T., Liu, F. & Glorius, F. Towards mild metal-catalyzed C–H bond activation. Chem. Soc. Rev. 40, 4740–4761 (2011).

    Article  CAS  Google Scholar 

  4. Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C–H bond functionalizations: mechanism and scope. Chem. Rev. 111, 1315–1345 (2011).

    Article  CAS  Google Scholar 

  5. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    Article  CAS  Google Scholar 

  6. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).

    Article  CAS  Google Scholar 

  7. Li, H., Li, B-J. & Shi, Z-J. Challenge and progress: palladium-catalyzed sp3 C–H activation. Catal. Sci. Technol. 1, 191–206 (2011).

    Article  Google Scholar 

  8. Jazzar, R., Hitce, J., Renaudat, A., Sofack-Kreutzer, J. & Baudoin, O. Functionalization of organic molecules by transition-metal-catalyzed C(sp3)–H activation. Chem. Eur. J. 16, 2654–2672 (2010).

    Article  CAS  Google Scholar 

  9. He, G., Zhao, Y., Zhang, S., Lu, C. & Chen, G. Highly efficient syntheses of azetidines, pyrrolidines, and indolines via palladium catalyzed intramolecular amination of C(sp3)–H and C(sp2)–H bonds at gamma and delta positions. J. Am. Chem. Soc. 134, 3–6 (2012).

    Article  CAS  Google Scholar 

  10. Nadres, E. T. & Daugulis, O. Heterocycle synthesis via direct C–H/N–H coupling. J. Am. Chem. Soc. 134, 7–10 (2012).

    Article  CAS  Google Scholar 

  11. White, M. C. Adding aliphatic C–H bond oxidations to synthesis. Science 335, 807–809 (2012).

    Article  CAS  Google Scholar 

  12. Newhouse, T. & Baran, P. S. If C–H bonds could talk: selective C–H bond oxidation. Angew. Chem. Int. Ed. 50, 3362–3374 (2011).

    Article  CAS  Google Scholar 

  13. Ortiz de Montellano, P. R. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev. 110, 932–948 (2009).

    Article  Google Scholar 

  14. McNeill, E. & Du Bois, J. Catalytic C–H oxidation by a triazamacrocyclic ruthenium complex. Chem. Sci. 3, 1810–1813 (2012).

    Article  CAS  Google Scholar 

  15. Bigi, M. A., Reed, S. A. & White, M. C. Diverting non-haem iron catalysed aliphatic C–H hydroxylations towards desaturations. Nature Chem. 3, 216–222 (2011).

    Article  CAS  Google Scholar 

  16. Prat, I. et al. Observation of Fe(V)=O using variable-temperature mass spectrometry and its enzyme-like C–H and C=C oxidation reactions. Nature Chem. 3, 788–793 (2011).

    Article  CAS  Google Scholar 

  17. Chen, M. S. & White, M. C. Combined effects on selectivity in Fe-catalyzed methylene oxidation. Science 327, 566–571 (2010).

    Article  CAS  Google Scholar 

  18. Kamata, K., Yonehara, K., Nakagawa, Y., Uehara, K. & Mizuno, N. Efficient stereo- and regioselective hydroxylation of alkanes catalysed by a bulky polyoxometalate. Nature Chem. 2, 478–483 (2010).

    Article  CAS  Google Scholar 

  19. Chen, M. S. & White, M. C. A predictably selective aliphatic C–H oxidation reaction for complex molecule synthesis. Science 318, 783–787 (2007).

    Article  CAS  Google Scholar 

  20. Das, S., Incarvito, C. D., Crabtree, R. H. & Brudvig, G. W. Molecular recognition in the selective oxygenation of saturated C–H bonds by a dimanganese catalyst. Science 312, 1941–1943 (2006).

    Article  CAS  Google Scholar 

  21. Giri, R. et al. Pd-catalyzed stereoselective oxidation of methyl groups by inexpensive oxidants under mild conditions: a dual role for carboxylic anhydrides in catalytic C–H bond oxidation. Angew. Chem. Int. Ed. 44, 7420–7424 (2005).

    Article  CAS  Google Scholar 

  22. Desai, L. V., Hull, K. L. & Sanford, M. S. Palladium-catalyzed oxygenation of unactivated sp3 C–H bonds. J. Am. Chem. Soc. 126, 9542–9543 (2004).

    Article  CAS  Google Scholar 

  23. Simmons, E. M. & Hartwig, J. F. Catalytic functionalization of unactivated primary C–H bonds directed by an alcohol. Nature 483, 70–73 (2012).

    Article  CAS  Google Scholar 

  24. Tsukada, N. & Hartwig, J. F. Intermolecular and intramolecular, platinum-catalyzed, acceptorless dehydrogenative coupling of hydrosilanes with aryl and aliphatic methyl C–H bonds. J. Am. Chem. Soc. 127, 5022–5023 (2005).

    Article  CAS  Google Scholar 

  25. Kuninobu, Y., Nakahara, T., Takeshima, H. & Takai, K. Rhodium-catalyzed intramolecular silylation of unactivated C(sp3)–H bonds. Org. Lett. 15, 426–428 (2013).

    Article  CAS  Google Scholar 

  26. Jones, G. R. & Landais, Y. The oxidation of the carbon–silicon bond. Tetrahedron 52, 7599–7662 (1996).

    Article  CAS  Google Scholar 

  27. Kuznetsov, A. & Gevorgyan, V. General and practical one-pot synthesis of dihydrobenzosiloles from styrenes. Org. Lett. 14, 914–917 (2012).

    Article  CAS  Google Scholar 

  28. Zaitsev, V. G., Shabashov, D. & Daugulis, O. Highly regioselective arylation of sp3 C–H bonds catalyzed by palladium acetate. J. Am. Chem. Soc. 127, 13154–13155 (2005).

    Article  CAS  Google Scholar 

  29. Watanabe, H., Aoki, M., Sakurai, N., Watanabe, K-I. & Nagai, Y. Selective synthesis of mono-alkyldichlorosilanes via the reaction of olefins with dichlorosilane catalyzed by group VIII metal phosphine complexes. J. Organomet. Chem. 160, C1–C7 (1978).

    Article  CAS  Google Scholar 

  30. Smitrovich, J. H. & Woerpel, K. A. Oxidation of sterically hindered alkoxysilanes and phenylsilanes under basic conditions. J. Org. Chem. 61, 6044–6046 (1996).

    Article  CAS  Google Scholar 

  31. Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nature Chem. 5, 369–375 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of the National Institute of Health (GM-64444) and the National Science Foundation (CHE-1112055) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

N.G., F.S.M. and A.V.G. contributed equally to this work. N.G., F.S.M. and A.V.G. designed and performed the experiments and wrote the manuscript. C.H. performed the experiments at an early stage of the project. All authors participated in the discussion of the results. V.G. conceived and guided the research.

Corresponding author

Correspondence to Vladimir Gevorgyan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghavtadze, N., Melkonyan, F., Gulevich, A. et al. Conversion of 1-alkenes into 1,4-diols through an auxiliary-mediated formal homoallylic C–H oxidation. Nature Chem 6, 122–125 (2014). https://doi.org/10.1038/nchem.1841

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1841

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing