Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ɛ-Tubulin is required for centriole duplication and microtubule organization

Abstract

Centrosomes nucleate microtubules and serve as poles of the mitotic spindle. Centrioles are a core component of centrosomes and duplicate once per cell cycle. We previously identified ɛ-tubulin as a new member of the tubulin superfamily that localizes asymmetrically to the two centrosomes after duplication. We show that recruitment of ɛ-tubulin to the new centrosome can only occur after exit from S phase and that ɛ-tubulin is associated with the sub-distal appendages of mature centrioles. Xenopus laevis ɛ-tubulin was cloned and shown to be similar to human ɛ-tubulin in both sequence and localization. Depletion of ɛ-tubulin from Xenopus egg extracts blocks centriole duplication in S phase and formation of organized centrosome-independent microtubule asters in M phase. We conclude that ɛ-tubulin is a component of the sub-distal appendages of the centriole, explaining its asymmetric localization to old and new centrosomes, and that ɛ-tubulin is required for centriole duplication and organization of the pericentriolar material.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell-cycle-regulated accumulation of ɛ-tubulin.
Figure 2: ɛ-Tubulin is associated with the sub-distal appendages of centrioles.
Figure 3: Localization of ɛ-Tubulin and Ninein.
Figure 4: ɛ-Tubulin is required for centriole duplication.
Figure 5: ɛ-Tubulin is required for formation of acentrosomal microtubule asters.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Moritz, M. & Agard, D. A. γ-tubulin complexes and microtubule nucleation. Curr. Opin. Struct. Biol. 11, 174–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Dutcher, S. K. & Trabuco, E. C. The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes δ-tubulin, a new member of the tubulin superfamily. Mol. Biol. Cell 9, 1293–1308 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Garreau De Loubresse, N., Ruiz, F., Beisson, J. & Klotz, C. Role of δ-tubulin and the C-tubule in assembly of Paramecium basal bodies. BMC Cell Biol. 2, 4 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chang, P. & Stearns, T. δ tubulin and ɛ tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function. Nature Cell Biol. 2, 30–35 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Rieder, C. L. & Borisy, G. G. The centrosome cycle in PtK2 cells: asymmetric distribution and structural changes in the pericentriolar material. Biol. Cell 44, 117–132 (1982).

    Google Scholar 

  6. Vorobjev, I. A. & Chentsov Yu, S. Centrioles in the cell cycle. I. Epithelial cells. J. Cell Biol. 93, 938–949 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Mogensen, M. M., Malik, A., Piel, M., Bouckson-Castaing, V. & Bornens, M. Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J. Cell Sci. 113, 3013–3023 (2000).

    CAS  PubMed  Google Scholar 

  8. Bornens, M. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 14, 25–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Paoletti, A., Moudjou, M., Paintrand, M., Salisbury, J. L. & Bornens, M. Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. J. Cell Sci. 109, 3089–3102 (1996).

    CAS  PubMed  Google Scholar 

  10. Balczon, R. et al. Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese Hamster Ovary cells. J. Cell Biol. 130, 105–115 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Vaughan, S. et al. New tubulins in protozoal parasites. Curr. Biol. 10, R258–R259 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Hinchcliffe, E. H., Chuan, L., Thompson, E. A., Maller, J. A. & Sluder, G. Requirement of Cdk2–cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283, 851–854 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Lacey, K. R., Jackson, P. & Stearns, T. Cyclin-dependent kinase control of centrosome duplication. Proc. Natl Acad. Sci. USA 96, 2817–2822 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. King, R. W. et al. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81, 279–288 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Stearns, T. & Kirschner, M. In vitro reconstitution of centrosome assembly and function: the central role of γ-tubulin. Cell 76, 623–637 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Felix, M.-A., Antony, C., Wright, M. & Maro, B. Centrosome assembly in vitro: role of γ-tubulin recruitment in Xenopus sperm aster formation. J. Cell Biol. 124, 19–31 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Verde, F., Berrez, J. M., Antony, C. & Karsenti, E. Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein. J. Cell Biol. 112, 1177–1187 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Lange, B. M. & Gull, K. A molecular marker for centriole maturation in the mammalian cell cycle. J. Cell Biol. 130, 919–927 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Brohmann, H., Pinnecke, S. & Hoyer-Fender, S. Identification and characterization of new cDNAs encoding outer dense fiber proteins of rat sperm. J. Biol. Chem. 272, 10327–10332 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Nakagawa, Y., Yamane, Y., Okanoue, T. & Tsukita, S. Outer dense fiber 2 is a widespread centrosome scaffold component preferentially associated with mother centrioles: its identification from isolated centrosomes. Mol. Biol. Cell 12, 1687–1697 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Inclan, Y. F. & Nogales, E. Structural models for the self-assembly and microtubule interactions of γ-, δ- and ɛ-tubulin. J. Cell Sci. 114, 413–422 (2001).

    CAS  PubMed  Google Scholar 

  22. Dupuis-Williams, P. et al. Functional role of ɛ-tubulin in the assembly of the centriolar microtubule scaffold. J. Cell Biol. 158, 1183–1193 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dutcher, S. K., Morrissette, N. S., Preble, A. M., Rackley, C. & Stanga, J. ɛ-tubulin is an essential component of the centriole. Mol. Biol. Cell (in the press).

  24. Callaini, G., Whitfield, W. G. & Riparbelli, M. G. Centriole and centrosome dynamics during the embryonic cell cycles that follow the formation of the cellular blastoderm in Drosophila. Exp. Cell Res. 234, 183–190 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Wolf, N., Hirsh, D. & McIntosh, J. R. Spermatogenesis in males of the free-living nematode, Caenorhabditis elegans. J. Ultrastruct. Res. 63, 155–169 (1978).

    Article  CAS  PubMed  Google Scholar 

  26. Murray, A. W. in Xenopus laevis: practical uses in cell and molecular biology (eds Kay, B. K. & Peng, H. B.) 581–605 (Academic Press, San Diego, 1991).

    Book  Google Scholar 

  27. Mariani, B. D., Slate, D. L. & Schimke, R. T. S phase-specific synthesis of dihydrofolate reductase in Chinese hamster ovary cells. Proc. Natl Acad. Sci. USA 78, 4985–4989 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Frydman for HSP70 antibodies, G. Chan for the ninein antibody, J. Salisbury for the centrin antibody, H. Fisk for assistance in culturing cells for electron microscopy, G. Fang's lab for reagents and Sigma Israel for pre-production supply of the ɛ-tubulin monoclonal antibody. We also thank a reviewer for pointing out the identity of cenexin and ODF2. This work was supported by National Institutes of Health grants GM52022 (T.S.) and GM 51312 (M.W.). P.C. was supported by an NIH predoctoral training grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Stearns.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, P., Giddings, T., Winey, M. et al. ɛ-Tubulin is required for centriole duplication and microtubule organization. Nat Cell Biol 5, 71–76 (2003). https://doi.org/10.1038/ncb900

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb900

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing