Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signalling and crosstalk of Rho GTPases in mediating axon guidance

Abstract

Axon extension during development of the nervous system is guided by many factors, but the signalling mechanisms responsible for triggering this extension remain mostly unknown. Here we have examined the role of Rho family small guanosine triphosphatases (GTPases) in mediating axon guidance by diffusible factors. Expression of either dominant-negative or constitutively active Cdc42 in cultured Xenopus laevis spinal neurons, at a concentration that does not substantially affect filopodial formation and neurite extension, abolishes the chemoattractive growth cone turning induced by a gradient of brain-derived neurotrophic factor that can activate Cdc42 and Rac in cultured neurons. Chemorepulsion induced by a gradient of lysophosphatidic acid is also abolished by the expression of dominant-negative RhoA. We also show that an asymmetry in Rho kinase or filopodial initiation across the growth cone is sufficient to trigger the turning response and that there is a crosstalk between the Cdc42 and RhoA pathways through their converging actions on the myosin activity essential for growth cone chemorepulsion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth cone turning induced by a gradient of BDNF or LPA.
Figure 2: Effect of toxin B on neurite extension and filopodial activity.
Figure 3: Rho GTPase expression in Xenopus embryos and spinal neurons.
Figure 4: Regulation of Rho GTPases by BDNF and effect of mutant Cdc42 and RhoA.
Figure 5: RhoA- and ROCK-dependent neurite inhibition induced by LPA.
Figure 6: Role of actin and myosin in filopodial dynamics.
Figure 7: Effects of Y-27632, ML-7 and BDM on growth cone turning responses.
Figure 8: Model of Cdc42- and RhoA-mediated growth cone guidance.

Similar content being viewed by others

References

  1. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Mueller, B. K. Growth cone guidance: first steps towards a deeper understanding. Annu. Rev. Neurosci. 22, 351–388 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Song, H.-J. & Poo, M.-M. The cell biology of neuronal navigation. Nature Cell Biol. 3, E81–E88 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16, 3044–3056 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arcaro, A. The small GTP-binding protein Rac promotes the dissociation of gelsolin from actin filaments in neutrophils. J. Biol. Chem. 273, 805–813 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Dickson, B. J. Rho GTPases in growth cone guidance. Curr. Opin. Neurobiol. 11, 103–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Jin, Z. & Strittmatter, S. M. Rac1 mediates collapsin-1-induced growth cone collapse. J. Neurosci. 17, 6256–6263 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zipkin, I. D., Kindt, R. M. & Kenyon, C. J. Role of a new Rho family member in cell migration and axon guidance in C. elegans. Cell 90, 883–894 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Kaufmann, N., Wills, Z. P. & Van Vactor, D. Drosophila Rac1 controls motor axon guidance. Development 125, 453–461 (1998).

    CAS  PubMed  Google Scholar 

  11. Ruchhoeft, M. L., Ohnuma, S., McNeill, L., Holt, C. E. & Harris, W. A. The neuronal architecture of Xenopus retinal ganglion cells is sculpted by Rho-family GTPases in vivo. J. Neurosci. 19, 8454–8463 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bashaw, G. J., Hu, H., Nobes, C. D. & Goodman, C. S. A novel Dbl family RhoGEF promotes Rho-dependent axon attraction to the central nervous system midline in Drosophila and overcomes Robo repulsion. J. Cell Biol. 155, 1117–1122 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ng, J. et al. Rac GTPases control axon growth, guidance and branching. Nature 416, 442–447 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Wahl, S., Barth, H., Ciossek, T., Aktories, K. & Mueller, B. K. Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J. Cell Biol. 149, 263–270 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wong, K. et al. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit–Robo pathway. Cell 107, 209–221 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Whitford, K. L. & Ghosh, A. Plexin signaling via off-track and rho family GTPases. Neuron 32, 1–3 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Li, X., Saint-Cyr-Proulx, E., Aktories, K. & Lamarche-Vane, N. Rac1 and Cdc42 but not RhoA or Rho kinase activities are required for neurite outgrowth induced by the Netrin-1 receptor DCC (deleted in colorectal cancer) in N1E-115 neuroblastoma cells. J. Biol. Chem. 277, 15207–15214 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Kozma, R., Sarner, S., Ahmed, S. & Lim, L. Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol. Cell. Biol. 17, 1201–1211 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chun, J. Lysophospholipid receptors: implications for neural signaling. Crit. Rev. Neurobiol. 13, 151–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Song, H.-J., Ming, G.-L. & Poo, M.-M. cAMP-induced switching in turning direction of nerve growth cones. Nature 388, 275–279 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Bradke, F. & Dotti, C. G. The role of local actin instability in axon formation. Science 283, 1931–1934 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, X., Berninger, B. & Poo, M.-M. Localized synaptic actions of neurotrophin-4. J. Neurosci. 18, 4985–4992 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luo, L., Jan, L. Y. & Jan, Y. N. Rho family GTP-binding proteins in growth cone signalling. Curr. Opin. Neurobiol. 7, 81–86 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Ren, X. D., Kiosses, W. B. & Schwartz, M. A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskelton. EMBO J. 18, 578–585 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ishizaki, T. et al. Pharmacological properties of Y-27632, a specific inhibitor of Rho-associated kinases. Mol. Pharmacol. 57, 976–983 (2000).

    CAS  PubMed  Google Scholar 

  26. Herrmann, C., Wray, J., Travers, F. & Barman, T. Effect of 2,3-butanedione monoxime on myosin and myofibrillar ATPases. An example of an uncompetitive inhibitor. Biochemistry 31, 12227–12232 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Zheng, J. Q., Wan, J. J. & Poo, M.-M. Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient. J. Neurosci. 16, 1140–1149 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin, C. H., Espreafico, E. M., Mooseker, M. S. & Forscher, P. Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron. 16, 769–782 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Amano, M. et al. Myosin II activation promotes neurite retraction during the action of Rho and Rho-kinase. Genes Cells 3, 177–188 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Eddy, R. J., Pierini, L. M., Matsumura, F. & Maxfield, F. R. Ca2+-dependent myosin II activation is required for uropod retraction during neutrophil migration. J. Cell Sci. 113, 1287–1298 (2000).

    CAS  PubMed  Google Scholar 

  31. Amano, M. et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246–20249 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Kimura, K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245–248 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. O'Connor, R. & Tessier-Lavigne, M. Identification of maxillary factor, a maxillary process-derived chemoattractant for developing trigeminal sensory axons. Neuron 24, 165–178 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Tucker, K. L., Meyer, M. & Barde, Y. A. Neurotrophins are required for nerve growth during development. Nature Neurosci. 4, 29–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391, 93–96 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Meinhardt, H. Orientation of chemotactic cell and growth cone models and mechanisms. J. Cell Sci. 112, 2867–2874 (1999).

    CAS  PubMed  Google Scholar 

  37. Wang, Q. & Zheng, J. Q. cAMP-mediated regulation of neurotrophin-induced collapse of nerve growth cones. J. Neurosci. 18, 4973–4984 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cahoon-Metzger, S. M., Wang, G. & Scott, S. A. Contribution of BDNF-mediated inhibition in patterning avian skin innervation. Dev. Biol. 232, 246–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S. & Lim, L. A brain serine/theronine protein kinase activated by Cdc42 and Rac1. Nature 367, 40–46 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Bibel, M. & Barde, Y. A. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 14, 2919–2937 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Sebbagh, M. et al. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nature Cell Biol. 3, 346–352 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Sahai, E. & Marshall, C. J. ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nature Cell Biol. 4, 408–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Fukushima, N., Weiner, J. A. & Chun, J. Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphology. Dev. Biol. 228, 6–18 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Contos, J. J., Fukushima, N., Weiner, J. A., Kaushal, D. & Chun, J. Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc. Natl Acad. Sci. USA 21, 13384–13389 (2000).

    Article  Google Scholar 

  45. Kawano, Y. et al. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J. Cell Biol. 147, 1023–1038 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Crawford, J. M., Su, Z., Varlamova, O., Bresnick, A. R. & Kiehart, D. P. Role of myosin-II phosphorylation in V12Cdc42-mediated disruption of Drosophila cellularization. Eur. J. Cell Biol. 80, 240–244 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Li, Z., Aizenman, C. D. & Cline, H. T. Regulation of rho GTPases by crosstalk and neuronal activity in vivo. Neuron 28, 741–750 (2002).

    Article  Google Scholar 

  49. Sander, E. E. R., ten Klooster, J. P., van Delft, S., van der Kammen, R. A. & Collard, J. G. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol. 147, 1009–1022 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Ming and M. Ruchhoeft for communicating unpublished results; D. Turner, A. Hall and G. Bokoch for providing cDNA clones; and Yoshitomi Pharmaceuticals for Y-27632. This work was supported by grants from the Major State Basic Research Program of China and the Shanghai Science and Technology Development Foundation. M-m.P. was supported in part by a grant from the NIH.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Xb., Jin, M., Xu, X. et al. Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nat Cell Biol 5, 38–45 (2003). https://doi.org/10.1038/ncb895

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb895

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing