Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements

Abstract

Embryonic morphogenesis is driven by a suite of cell behaviours, including coordinated shape changes, cellular rearrangements and individual cell migrations, whose molecular determinants are largely unknown. In the zebrafish, Dani rerio, trilobite mutant embryos have defects in gastrulation movements1,2,3,4 and posterior migration of hindbrain neurons5. Here, we have used positional cloning to demonstrate that trilobite mutations disrupt the transmembrane protein Strabismus (Stbm)/Van Gogh (Vang), previously associated with planar cell polarity (PCP) in Drosophila melanogaster6,7, and PCP and canonical Wnt/β-catenin signalling in vertebrates8,9. Our genetic and molecular analyses argue that during gastrulation, trilobite interacts with the PCP pathway without affecting canonical Wnt signalling. Furthermore, trilobite may regulate neuronal migration independently of PCP molecules. We show that trilobite mediates polarization of distinct movement behaviours. During gastrulation convergence and extension movements, trilobite regulates mediolateral cell polarity underlying effective intercalation and directed dorsal migration at increasing velocities. In the hindbrain, trilobite controls effective migration of branchiomotor neurons towards posterior rhombomeres. Mosaic analyses show trilobite functions cell-autonomously and non-autonomously in gastrulae and the hindbrain. We propose Trilobite/Stbm mediates cellular interactions that confer directionality on distinct movements during vertebrate embryogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: tri encodes a Stbm homologue.
Figure 2: tri functions autonomously and non-autonomously to control cell polarity.
Figure 3: tri is required for the increased net speed of directed dorsal migration.
Figure 4: tri functions autonomously and non-autonomously during tangential neuronal migration.

Similar content being viewed by others

References

  1. Solnica-Krezel, L. et al. Development 123, 67–80 (1996).

    CAS  PubMed  Google Scholar 

  2. Sepich, D. S. et al. Genesis 27, 159–173 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Marlow, F. et al. Dev. Biol. 203, 382–399 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Hammerschmidt, M. et al. Development 123, 143–151 (1996).

    CAS  PubMed  Google Scholar 

  5. Bingham, S., Higashijima, S., Okamoto, H. & Chandrasekhar, A. Dev. Biol. 242, 149–160 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taylor, J., Abramova, N., Charlton, J. & Adler, P. N. Genetics 150, 199–210 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wolff, T. & Rubin, G. M. Development 125, 1149–1159 (1998).

    CAS  PubMed  Google Scholar 

  8. Darken, R. S. et al. EMBO J. 21, 976–985 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Park, M. & Moon, R. T. Nature Cell Biol. 4, 20–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Haffter, P. et al. Development 123, 1–36 (1996).

    CAS  PubMed  Google Scholar 

  11. Driever, W. et al. Development 123, 37–46 (1996).

    CAS  PubMed  Google Scholar 

  12. Sokol, S. Y. Curr. Biol. 6, 1456–1467 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Heisenberg, C. P. et al. Nature 405, 76–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Adler, P. N. & Lee, H. Curr. Opin. Cell Biol. 13, 635–640 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Nasevicius, A. & Ekker, S. C. Nature Genet. 26, 216–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Heisenberg, C. P. & Tada, M. Curr. Biol. 12, R126–R128 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Murdoch, J. N., Doudney, K., Paternotte, C., Copp, A. J. & Stanier, P. Hum. Mol. Genet. 10, 2593–2601 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Park, M. & Moon, R. T. Nature Cell Biol. 4, 20 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Lekven, A. C., Thorpe, C. J., Waxman, J. S. & Moon, R. T. Dev. Cell 1, 103–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Erter, C. E., Wilm, T. P., Basler, N., Wright, C. V. & Solnica-Krezel, L. Development 128, 3571–3583 (2001).

    CAS  PubMed  Google Scholar 

  21. Wilson, S. W. & Rubenstein, J. L. Neuron 28, 641–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Heisenberg, C. P. & Nusslein-Volhard, C. Dev. Biol. 184, 85–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Marlow, F., Topczewski, J., Sepich, D. S. & Solnica-Krezel, L. Curr. Biol. 12, 876–884 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Myers, D. C., Sepich, D. S. & Solnica-Krezel, L. Dev. Biol. 243, 81–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Concha, M. L. & Adams, R. J. Development 125, 983–994 (1998).

    CAS  PubMed  Google Scholar 

  26. Wallingford, J. B. et al. Nature 405, 81–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Topczewski, J. et al. Dev. Cell. 1, 251–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Trinkaus, J. P. J. Exp. Zool. 281, 328–335 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Chandrasekhar, A., Moens, C. B., Warren, J. T. Jr., Kimmel, C. B. & Kuwada, J. Y. Development 124, 2633–2644 (1997).

    CAS  PubMed  Google Scholar 

  30. Higashijima, S., Hotta, Y. & Okamoto, H. J. Neurosci. 20, 206–218 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moens, C. B. & Fritz, A. Methods Cell Biol. 59, 253–272 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Kibar, Z. et al. Nature Genet. 28, 251–255 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Peifer, M. & McEwen, D. G. Cell 109, 271–274 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Tree, D. R. P. et al. Cell 109, 371–381 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Westerfield, M. The zebrafish book (University Oregon Press, Eugene, 1995).

    Google Scholar 

Download references

Acknowledgements

We thank B. Appel, R. Blakely, A. Schier, and C.V.E. Wright for critical comments. We thank J. Clanton and C. Baccam for excellent fish care, M. Halpern for γ-ray-mutagenized fish, M. Westerfield, H. Takeda, P. Ingham, M. Ekker, Y. Grinblat, B. Thisse, C. Thisse, E. Weinberg and T. Jowett for probes, R. Harland, S. Sokol and M. Tada for constructs, and C.-P. Heisenberg and H. Okamoto for fish. S.B. and A.C. are indebted to K. Cooper and C. Moens for invaluable guidance in transplantation procedures. The Zeiss confocal microscope is supported by National Insitutes of Health (NIH) grant 1S10RR015682. J.R.J. and D.S.S. are supported by a National Institutes of Health Vascular Biology Training Grant (T32HL07751). S.B. is supported by a NSF-Missouri's Alliance for Graduate Education and the Professoriate (MAGEP) fellowship and A.C. by NIH grant NS40449. L.S.K. is supported by NIH grant GM55101 and Pew Scholars Program in the Biomedical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilianna Solnica-Krezel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Methods and Figures

Figure S1. Positional cloning of tri. (PDF 283 kb)

Figure S2. Tri/Stbm does not regulate anteroposterior neural patterning.

Figure S3. Epistatic analysis of tri and PCP pathway components.

Movie S1 (MOV 1075 kb)

Movie S2 (MOV 1051 kb)

Movie S3 (MOV 1678 kb)

Movie S4 (MOV 3228 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jessen, J., Topczewski, J., Bingham, S. et al. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nat Cell Biol 4, 610–615 (2002). https://doi.org/10.1038/ncb828

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb828

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing